100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Research Methods;Applied empirical economics- Mid term summary.

Beoordeling
-
Verkocht
20
Pagina's
13
Geüpload op
08-01-2021
Geschreven in
2020/2021

Research Methods;Applied empirical economics- Mid term summary. metrics statistics IV RD did Instrumental variables regression discontinuity differences in differences public administration economics Also useful for students from different programs.

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Ja
Geüpload op
8 januari 2021
Aantal pagina's
13
Geschreven in
2020/2021
Type
Samenvatting

Voorbeeld van de inhoud

Research Methods: Applied Empirical Economics


Experimental data → selection bias is eliminated EX ANTE (van tevoren)
- IV → field experiments with non-compliance

Observational data → two ways to eliminate selection bias EX POST (achteraf)
- Instrumental Variables /Regression Discontinuity. → Recognize events that are as-
good-as-random
- Differences in differences → (and matching techniques): Make sure that you control
for all variables that may be correlated with the treatment and the outcome
variables → no omitted variables left…

Exogenous: is one whose value is determined outside the model and is imposed on the
model, and an exogenous change is a change in an exogenous variable.
Endogenous: is a variable whose value is determined by the model. An endogenous
change is a change in an endogenous variable in response to an exogenous change that is
imposed upon the model.

Omitted → weggelaten, not a problem perse only when 1+2
Omitted variable bias when:
• Yi = α + βQi + γAi + εi
• Yi: Dependent variable
• Qi: Treatment variable
• Ai : control variable
o Omitted variable is correlated with treatment variable, and
o Omitted variable has a direct effect on the dependent variable

In statistics and optimization, errors and residuals are two closely related and easily
confused measures of the deviation of an observed value of an element of a statistical
sample from its "theoretical value". The error (or disturbance) of an observed value is the
deviation of the observed value from the (unobservable) true value of a quantity of interest
(for example, a population mean), and the residual of an observed value is the difference
between the observed value and the estimated value of the quantity of interest (for
example, a sample mean). The distinction is most important in regression analysis, where
the concepts are sometimes called the regression errors and regression residuals and where
they lead to the concept of studentized residuals.

IV/ R.D.
Non-compliance:
o Treatment migration: control group gets treated
o Treatment dilution: assigned to treatment but not treated
- LATE = “Local” Average Treatment Effect

ρ → ITT
First stage: Ф
Second-stage: λ


1

, Randomized controlled trials → RCT
- Measuring the causal effect of treatment
- Get rid of selection bias
- Randomization:
o Similar before treatment → apples and apples
o Does the treatment have an effect?
- Causal effect of insurance Y1i – Y0i
o Suppose there are two potential outcomes Y for individual i:
o Y1i health status with insurance
o Y0i health status without insurance
- Difference in group means = Avgn[Y1i|Di=1] – Avgn’[Yoi|Di=o]
o Avg: average
o Y1i: with insurance
o Y0i: without insurance
o Di=1: individual insured
o Di=0: individual uninsured
- Treatment has same effect for everybody: Y1i – Y0i = κ
- Difference in group means
o = Avgn[Y1i|Di=1] – Avgn’[Yoi|Di=o]
o = Avgn[Y0i|Di=1] + κ – Avgn’[Yoi|Di=o]
o = κ + Avgn[Y0i|Di=1] – Avgn’[Yoi|Di=o]
o = average causal effect + selection bias
- Difference in group means captures the causal effect if:
o Avgn[Y0i|Di=1] = Avgn’[Yoi|Di=o]
o This is exactly what randomization does
- Useful statistics:
o Estimated treatment coefficient
o Estimated standard error
o T-value = Estimated treatment coefficient / Estimated standard error
▪ T-value <-2 or > 2:
▪ Reject null hypothesis of no treatment effect
o 95% confidence interval: [coefficient – 2*SE, coefficient + 2*SE]




2

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
MaxGregor Universiteit Leiden
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
59
Lid sinds
5 jaar
Aantal volgers
51
Documenten
11
Laatst verkocht
2 maanden geleden

2,8

5 beoordelingen

5
1
4
1
3
0
2
2
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen