100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Term 2 Lecture notes EC226 Econometrics Mastering 'Metrics - Score a first too

Beoordeling
-
Verkocht
-
Pagina's
12
Geüpload op
02-03-2024
Geschreven in
2023/2024

Pass your exams with a first!!! Providing an in-depth and comprehensive review of the EC226: Econometrics course from Warwick Economics. The revision notes were written by a student who scored a solid first in the module and final exams. Revision notes include content from all the weeks from term 2. For the full year, buy the combo or term one packs.

Meer zien Lees minder
Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Studie
Onbekend
Vak

Documentinformatie

Geüpload op
2 maart 2024
Aantal pagina's
12
Geschreven in
2023/2024
Type
College aantekeningen
Docent(en)
Jeremy smith
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Wat Serial Correlation
Distribution
of Coefficient in
Dynamic Time Series Models .
(vs) I :




Estimation of time sevel serial condation
of form of linear dependence
:
Presence over
Ols model of Yo
some




Recap T, - time
for some series
, zz

The autocorrelation Pictoral representation of which
this lineor
dependency, is
:


Function (ACF)
of C againstj) form of
I plots values
measured in the a correlation between Ez and Exx




Moving
to
T S .




for different 12 .




correlation
model
1) O
zen I Vk
--

cor(zz
(2
Co
that is : cor r za
=
Et , -
n
-


li I

-



O
-
-


+, -




v(zz)V(te -

k
I v(zi) -
y




It Bo B YE1 from lag of f=1 191 ju
-
+ +
Ef aise dependent variable where and l
=
, issues ·
, .




,




(i)
E(Et/yt 1) = 0 =
t(dely y ,
,
. .




+
ye 1 ,
ye
...

y 0
ez ,
2
+ n =
-o as h get
bigger ; fo =
)(z +, 7) :









&
!
strict
enogeneity is
r possible
Consider A&F in P
if
types Models :




4
(V(((y 1) +
=
0 t 1) White Noise
Ptypes of Model

MA ARMA
Autoregresive (AR) AR ;
Wil Cor (Ez , Es (y) = 0 Ets
:
;

roite
/0 04 (MA)
White
proce
(iv) Et 14 + 3)
Honing Average
-
N

large
,




d
enogeneity
las we
4) Autoregrenie Moving average
(ARMA) .




Samlim
* ~
- As
enogeneity
·
strict isn't possible -o
we replace (i) / :
Autocorrelation Function & White Noise Process (vi)
Ii) assumption of temporaneom enogeneity : [(dily , Yo , Ys .
. . .




.y .)
) =0 White Noise Process :



in words -
expectation of er ror

term is unconditional/unrelated on all value
of Y that happened up model :
Ex
=

Ex
-
(E) = 0 ↳
(4 k ,
= 0 to
until the previous va l u e ·




VIEl :
83 EWN(0 04 ,




station see



Straitlas umption o wedevel
vie


if ze E
-
E(zy E(4y) 0 constant
·


= = =
Mear
all

-
came for
↳adchen E(zz) Elke
-
z+ M+ 4 M+
= =




Mean


② v(y)) 5y V(z) = constant
->
+ t nuance
·
= -




③ (yt ytn) Un ((z 2)
>
-
ou
,
=
,
= 0 to
4 *
whet rol voe
previous
.

some




>
-
graph indicates :
if the Mocen in
"shocked" today ,
100 % of the


(W NI shoch remains
today but in a l l
future perod
WEAA
-




-ACF
. ,




DEPENDENCY .
There is to the shoch whatsoever -




no
memory

condition :
Corlyt Yen) Un - 0 =
as h get bigges

,







Lov
we
between
t a ke Gobs
observations
.
must
get smaller
,
the further it on

Each , dissipated
immediately is
- rent food .




creater similar condition to
sampling
a random
.

(1) Find Mat : 1 , N (p V (b , 1)
older 1 Model in which
cr of proces was
determined
by for.
val u e of
-of
,

: He
-



.
process



E AR (1) Model (vi) i
I'll
Hypother's Austing should also not i nv i l l e fitats ,
but the Xtat .




an add assumpt ou
·




the
-(i
ou
v(Ge & Could i e


*
ill
small a re


fol
a


PEz1
ols is bione
coefficien long is
large Et
conditions
of as the +
·
a re as
sanes him .




>
-
for I t to be stationor .




where it in a WN
process an d 10/11 (and have process in
stationary) -




Notes.
p
=

0 - Le derivation in Lecture


Note :
useful for proofs in to know it is a
purely random pocen & mated to all
including
past value of Ez

, continued
.




III
- -




Diagrammatically
-




·

p ,
10 ,
Gro

Diag i to



# Torammatical
goin decay zuo
9 0 20
·


. ·
, ,



f ·

if the proces is shocked today ,
100 % of the short is remembered

today
,
at period I
, of is remembered
,
ther
for every find pl ·
4. + & = complex roots
.

3
for
= 1 2 s
j , , ....,




O
Lautoregrenine
parameter
& o

back
low sucoil you agent shocked
①reces been GENERALIZATION AR(3) :


path Given joule
2 :



E to es.

of the path
.




out


= 47 ,
+
Pret +
-3 +
Et



& o
process

autoregressive parameter/coefficient .

ARP - E =

4, e + -2 +... +
Ptp + -C.N
27




Defining the
lag operator 1 ,
s .
A (z =
E -,
and 1'z ,
=
zej we
in this c a re -y
talked written as :




can write th Model as : VIze =
Vo =
Divi+ UntPatz . . .

&POP Note-Make sure

what each
to understand

of the

letters
V .
=
4 , 80
+
Prk +
&K +... +
PUP-1
Mear




=
=

P(Ez +
Ex
=
12 (l PH) -
= 4
+
=
ze =
I- PLT'Et 82 0, 8 =

.
+
aro +
934 +... +
%000-m


(PL)" &L P2
+
PL+ in which
. . .




Now : =
1 + + case :
...,




024 03 )Et E 94 + En P E 928j2 + Pojp ja Pt
°
+ + =
+ + +
Vi
=
&Vie + . .

>
+ ...
- - .




-




this in a MAIO)

be solved back substitution or in the first part Yule-walker MOVING MALI) MA(L) MALG)
by MODELS
can like AVERAGE ,
:

, ,

EQ
. weighted a r.
of new. random shocks
.
(4) =
0


MA(1) "E+=
G 08 Et
-
this
&
+
,
in case :
v(Et) =




cor(42 4) 0
jf0
=




Auto Regressive (AR2) ; AR(3) ; AR(p) Models Ot(4+ ) + E(at)
,


2 -


(E(7t
=
E(04 + ,
+ Ex) =

,
=
0/


(V(zd) =
Vo
=
(1 + 8462
Ex in
stationary
-
18 ,
+
02/
ARLI -
zz =
P ,
z
+ + $277- +
Et (((zt =zi) ,
=
y
=
062


WiN is to be (4) (zz 2) 0
and the assumed
stationary Lov d
in zt
=
where
Et
=
a
proces process ,




%
E(e) E(zz j) V(ze V(zz j) deine
AY
ht to
yield = /184 44 Lives O
=
equations : So =

f
=
;
=
so and = :
e =
,
-




E
E(z) (1 4, q)t(t)
=
- =
0
joll
V (z) d =
.
=


difl Pek + s Wote : the MA(1) can be written as an
infinite AR frocess to knows as
atibility
i



Ywell
Cor ( +) ,
=
0 .
=

06 +
Put
.




Co(z + K Pik ,
z = =

Pik MA(2) >
-
En
= 0 4 , .,
+
02 & 2
+ Ex
,




((zz ,
7 z- 3)
=

Us
=


Pik +
P28 simlor
yules-walked equation -




Diagrammatically :



Scen
By for
3

Puls the shoch
on

P6 (1) 2
-
extension MA(z) remembers
periods
- =

i
-




.
.
. >
- MA : When shocked remembers
the shock for I period
. MA(4) remembers shorth for q peroch length of M .
Al -




/ +0
3-Wf =
Ivonance .
-C- Piet Pulju joz
.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
joebloggs123 The University of Warwick
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
7
Lid sinds
3 jaar
Aantal volgers
4
Documenten
11
Laatst verkocht
1 jaar geleden

4,3

4 beoordelingen

5
1
4
3
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen