TEST BANK FOR Manifolds, Tensor and Forms An Intro
Maastricht University (UM)
Hier vind je de beste samenvattingen om te slagen voor TEST BANK FOR Manifolds, Tensor and Forms An Intro. Er zijn o.a. samenvattingen, aantekeningen en oefenvragen beschikbaar.
Alle 1 resultaten
Sorteer op:
-
Tentamen (uitwerkingen)
Exam (elaborations) TEST BANK FOR Manifolds, Tensor and Forms An Intro
-
---169februari 20222021/2022A+
- Exam (elaborations) TEST BANK FOR Manifolds, Tensor and Forms An Intro 
6 Let v1, v2 ∈ ker T . Then T (av1 + bv2) = aT v1 + bT v2 = 0, so ker T is 
closed under linear combinations. Moreover ker T contains the zero vector of 
V. All the other vector space properties are easily seen to follow, so ker T is a 
subspace of V. Similarly, let w1, w2 ∈ im T and consider aw1 + bw2. There 
exist v1, v2 ∈ V such that T v1 = w1 and T v2 = w2, so T (av1 + bv2) = 
aT v1 + bT v2 = aw1 + bw2, which show...
-
€9,49 Meer Info
COURSEHERO2