100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Molecular Biology of the Cell - Hoofdstuk 5

Beoordeling
-
Verkocht
1
Pagina's
7
Geüpload op
27-01-2021
Geschreven in
2019/2020

Samenvatting Molecular Biology of the Cell Hoofdstuk 5 (2019/2020)










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Hoofdstuk 5
Geüpload op
27 januari 2021
Aantal pagina's
7
Geschreven in
2019/2020
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Molecular Biology of The Cell – Hoofdstuk 5

Uit onderzoek met het groeien van de E. coli op lactose en vervolgens glucose bodem blijkt dat deze
bacterie soort een mutatie snelheid heeft van 3 nucleotiden op 10 10 nucleotiden per cel generatie. Bij
mensen kan dit iets nauwkeuriger door het complete genoom van de ouders en hun nakomelingen te
sequencen. Zo blijkt er één nucleotide per 10 8 nucleotiden te veranderen per humane generatie.

Een DNA-molecuul repliceert zich semi-conservatief, wat inhoudt dat elke dochtercel één originele
DNA streng en één nieuwe DNA streng ontvangt.

Replication fork: het actieve gebied waarbinnen de DNA-replicatie plaatsvindt.
DNA-polymerase in de replicatie vork kan enkel strengen synthetiseren in de 5’ naar 3’ richting.
Okazaki fragmenten zijn bij eukaryoten 100-200 nucleotiden lang, worden in de 5’ naar 3’ richting
gevormd en later aan elkaar gezet.
De replicatie vork is asymmetrisch, waarbij de leading strang in één keer wordt gevormd, en de
lagging strand in Okazaki fragmenten wordt gevormd.

Het DNA-polymerase molecuul voert een eerste ‘proofreading’ uit voor de nieuwe nucleotide
covalent wordt verbonden aan de groeiende streng. Dit wordt verklaard omdat een foute nucleotide
een lagere affiniteit heeft voor DNA-polymerase omdat het energetisch ongunstig is. Een dubbele
check vindt plaats als het enzym zich strakker rond de active site vouwt, dit strakker vouwen gebeurt
eerder als de juiste nucleotide aan de groeiende streng wordt gezet. Omdat incorrecte basenparen
moeilijker zijn aan de streng te zetten diffunderen deze weg voor een covalente binding wordt
gevormd.
Als een incorrecte base toch aan de streng gezet is vindt exonucleolytic proofreading plaats. DNA-
polymerase kan enkel elongeren bij een correcte 3’-OH einde van een primer strand. Mocht het 3’
uiteinde incorrect zijn, dan kipt een andere katalytische kern van het DNA-polymerase zo veel
nucleotiden weg tot een correcte 3’ uiteinde bereikt wordt. De 3’-to-5’ proofreading exonuclease
functioneert dus als een zelf corrigerend enzym.
- Vanwege dit enzym heeft een DNA-polymerase altijd een primer nodig. Omdat deze
enzymatische werking mist in een RNA-polymerase, heeft RNA-polymerase geen primer
nodig.

Als de DNA streng aan zou groeien aan de 5’ kant, zou er als er een verkeerde nucleotide is geplaatst
geen energie meer zijn om een nieuwe nucleotide aan te zetten omdat de energie uit de 5’ fosfaat
groep al gebruikt is. Dankzij de 5’ naar 3’ richting van DNA-polymerisatie is exonucleolytisch
proofreading mogelijk.

DNA primase produceert korte RNA-primers (10 nucleotiden) als begin voor DBA-polymerase. Aan de
lagging strand moeten er continu primers worden gemaakt, aan de leading strand gebeurt dit maar
één keer.

Aan het einde van een okazaki fragment loopt DNA-polymerase tegen de 5’ kant van de vorige RNA-
primer. De RNA-primer wordt verwijderd en vervangen voor DNA door DNA repair enzymen waarna
DNA ligase de twee uiteinden verbindt. Omdat een enzym wat zelf opnieuw een keten kan beginnen
vaak onnauwkeurig is, is het handig om eerst een RNA proef versie te maken, waarna deze
nauwkeurig vervangen wordt door echt DNA.

DNA helicases hydrolyseren ATP, waarna ze de vrijgekomen energie gebruiken om de
waterstofbruggen tussen de twee DNA strengen te verbreken.

, Single-strand DNA-binding (SSB) proteins binden aan bloot enkel strengs DNA, maar houden hierbij
de basen vrij zodat deze kunnen dienen als template. Zp stabiliseren ze de ungebonden enkelstrengs
conformatie. Hiermee wordt voorkomen dat er hairpin helixes ontstaan.

PCN is een eiwit wat dient als sliding clamp om te voorkomen dat DNA-polymerase de
polymeriserende streng zomaar loslaat. Zodra de polymerase een stuk dubbel strengs DNA bereikt
laat het PCN de polymerase los, en valt deze van het DNA af. Om de clamp rond de polymerase te
krijgen is de clamp loader (eiwit) en energie uit ATP-hydrolyse nodig.

De energie voor DNA-polymerase wordt geleverd door nucleoside trifosfaat hydrolyse. Veel van de
replicatie eiwitten zijn met elkaar verbonden en vormen zo een grote eenheid.

Door mutaties in zogenaamde mutator genes neemt de snelheid van spontane mutaties enorm toe.
Denk hierbij aan een mutatie in de 3’-to-5’-proofreading exonuclease.

Als een mutatie toch langs de proofreading exonuclease is gekomen detecteert het strand-directed
mismatch repair system dit. Om een fout goed te kunnen herstellen moet het systeem de oude van
de nieuwe strand onderscheiden. Bij de E. coli worden aan alle A-residuen in een GATC-sequentie
een methyl groep gezet. Dit gebeurt echter niet direct naar de DNA-synthese. Het repair systeem
moet dus de strand vinden waar het ‘nieuwste’ deel nog geen A methylatie heeft.
1. Herkenning van de nieuwe strand aan de hand van GATC methylatie
2. Verwijderen van het stuk DNA met de mismatch
3. Synthetiseren van het verwijderde stuk met de oude strand als template

Bij eukaryoten bevat de nieuwe lagging strand nicks voordat deze worden hersteld door een ligase.
Deze nicks, ook wel single strand breaks, duiden aan dat de streng nieuw is. Hoe dit gebeurt bij de
leading strand (die geen single strand breaks heeft) is nog onduidelijk.

Een mutatie in een mismatch repair gene kan leiden tot een vergrootte kans op kanker, omdat
mutaties in de rest van de genen nu ook makkelijker accumuleren.

Door het DNA topoisomerase wordt het over-draaiing probleem van het DNA voor de replication vork
opgelost. Dit eiwit verbreekt een fosfodiester band in een DNA streng, dit is echter omkeerbaar als
het eiwit weer vertrekt. DNA topoisomerase I verbreekt de fosfodiester band in één van de DNA
backbones waardoor er een single strand break ontstaat. Het eiwit houdt de energie vast die
vrijkwam bij het breken van de band en als de strengen weer goed gedraaid zijn wordt deze energie
weer gebruikt om ze te verbinden. DNA topoisomerase II maakt een dubbelstrengsbreuk in het DNA.
Dit gebeurt alleen als er twee helixen door elkaar liggen en ze alleen vrij kunnen komen als een van
de helixen doorbroken wordt.

Hoewel de algemene mechanismen van eukaryote en prokaryote DNA-replicatie sterk op elkaar
lijken zijn er toch enkele verschillen. De meeste eukaryote replicatie machines bestaan uit meerdere
eiwitcomplexen, wat waarschijnlijk leidt tot nauwkeurigere controlemechanismen. Dit is essentieel
voor het onderhouden van verschillende celtypes en differentiatie.
Daarnaast moet de eularyote DNA-replicatie langs nucleosomen bewegen. Deze bevinden zich om de
200 nucleotiden paren (verklaart ook waarom Okazaki fragmenten bij eukaryoten 100-200 bp lang
zijn, in tegenstelling tot 1000-2000 bp bij prokaryoten). Daarnaast vertragen deze nucleosomen de
DNA-polymerase moleculen.

De positie waar de DNA-helix voor het eerste wordt geopend is de replication origin. In simpele
cellen (denk aan bacteria) bestaan deze origins uit korte DNA-sequenties die inittiator eiwitten

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
FFV Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
87
Lid sinds
6 jaar
Aantal volgers
54
Documenten
72
Laatst verkocht
1 jaar geleden

Ik zit momenteel in mijn derde jaar biologie aan de Universiteit Utrecht waarbij ik me specialiseer in ontwikkelingsbiologie, toxicologie en cellulaire biologie. Momenteel sta ik cum laude. Naast mijn studie biologie volg ik het Honours Programma en doe ik dit jaar het bestuur van de Science Honours Academy. Als je vragen hebt, stel ze gerust! Ik raad sterk aan de bundels aan te schaffen omdat individuele bestanden niet goedkoper kunnen dan 2,50 en soms maar 4-6 pagina\'s omslaan

Lees meer Lees minder
4,0

2 beoordelingen

5
0
4
2
3
0
2
0
1
0

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen