100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Modelling Computing Systems Hoofdstuk 2 Faron Moller & Georg Struth

Beoordeling
4,0
(1)
Verkocht
1
Pagina's
6
Geüpload op
25-11-2020
Geschreven in
2020/2021

Logic for Computer Science / Logica voor computertechnolgie hoofdstuk 2. Samenvatting van het boek Modelling Computing Systems geschreven door Faron Moller en Georg Struth. Samenvatting geschreven in het Engels. Aan de hand van voorbeelden en plaatjes wordt de stof en theorie verduidelijkt. Gegeven op Universiteit Utrecht.

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Hoofdstuk 2
Geüpload op
25 november 2020
Aantal pagina's
6
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

  • 9781848003217

Voorbeeld van de inhoud

Hoofdstuk 2

A set is a collection of objects which typically share a property. The objects belonging to the
collection are individually referred to as its elements or members. The numbers of objects in a set A
is referred to as its cardinality and written as |A|. If there are not too many elements in the set then
it is described by writing its elements in a list between curly braces. Example:

- {false, true}; Cardinality = 2
- {3, 7, 14}; Cardinality = 3
- {red, blue, yellow}; Cardinality = 3
- {Joel, Felix, Oskar, Amanda}; Cardinality = 4

Listing all the elemens can get guite tedious. For lists with a great amount of elements we use the
following notation:

- {1, 3, 5, … , 99} (The set of 50 odd positive integers below 100);
- {a, b, c, .. , z} (The set of 26 letters of the alfabet);
- {2, 3, 5, 7, 11, 13, 17, …} (The infinite set of prime numbers);

But for example, the next element in the sequence after 17 is 21. Perhaps it’s isn’t even a number.
To avoind these kind of problems sets are typically describe not by explicitly listing the elements
between curly braces, but rather by describing the property that the elements share. In general, we
shall describe sets using the following set-builder notation: {x : x has property P}. This set consist of
exactly those elements x which satisfy the property P. More examples:

1. The collection of all beaches on the Gower Peninsula: {b : b is a beach on the Gower Peninsula}.
2. The collection of all people who climbed Mount Kailash: {p : p has climbed Mount Kailash}.
3. The collection of all prime numbers: {n : n is a prime number}.
4. The collection of all sets of people who have a common grandmother: {A : A is a set of people
who share a common grandmother}.



Note that Ø and { Ø} are different sets:
the set Ø contains no elements while
the set { Ø } contains one element,
namely the set Ø itself, and hence is not
the same as the empty set Ø.




A set with exactly one element is called a singleton:

- {a}
- {true}
- {{Wouter}}

Memberships are denoted by ∈. We can write the following propositions about sets:

- If x is an element of the set A, we write x ∈ A
- If x is not an element of the set A, we write x ∉ A

, A set is solely defined but its members, two sets are equal if, and only if, they have the same
elements. When you list the elements of a set, the order in which you list them, and the number of
times you list each element, doesn’t matter. Example:

- {3, 7, 14} = {7, 14, 3, 7, 3}
- {Joel, Felix, Oskar} ≠ {Joel, Felix, Oskar, Amanda}.

When all the elements of a set A are also elements of a set B, we say that A is a subset of B, written
A ⊆ B. More formally: A ⊆ B holds if and only if, for all x:

- x∈A⇒x∈B

We write A ⊈ B when A is not a subset of B; or more formally, ¬(A ⊆ B). If A and B are not equal, we
write A ≠ B. If A ≠ B and A ⊆ B we write A ⊂ B. Then A is a strict subset of B.

If x is an element of the set A x∈A

If x is not an element of the set A x∉A

If A and B are equal A=B
If A and B are not equal A≠B

If A = B and elements A = elements B (Subnet) A⊆B
If An and B are not a subnet A ⊈ B or ¬(A ⊆ B)

If A ≠ B and A ⊆ B (strict subnet) A⊂B



To help visualize a relation between sets, we can draw a Venn
diagram. For example we have the following sets:

1. X = {1, 2, 3, 4, 5}
2. Y = {2, 3, 4}
3. Z= {3, 4, 5, 6}

Here we have set U containing all possible elements (the universe
of discourse) as followed: U = {1, 2, 3, 4, 5, 6, 7, 8, 9,10} which will be the integer from 1 to 10.



The set B is a subset of U (here B drawn in green). The set A
is a subset of B (here A drawn in blue). In this way, we can
refer to the sets corresponding to the different regions of
this diagram, such as:

- the elements of B that are not in A;
- the elements in U that are not in A or B;

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
4 jaar geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
luukvaa Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
760
Lid sinds
7 jaar
Aantal volgers
589
Documenten
12
Laatst verkocht
1 week geleden

Welkom op mijn stuvia pagina! Kijk gerust rond welke samenvattingen op dit moment op mijn pagina staan. Gedurende elk jaar zullen er weer nieuwe samenvattingen verschijnen, dus neem af en toe een kijkje en klik op het knopje \'\'volgen\". Succes met studeren!

4,0

284 beoordelingen

5
108
4
102
3
58
2
5
1
11

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen