100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Lectures Information Retrieval

Beoordeling
-
Verkocht
2
Pagina's
30
Geüpload op
13-04-2020
Geschreven in
2019/2020

Hoorcolleges van het vak Information Retrieval











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
13 april 2020
Aantal pagina's
30
Geschreven in
2019/2020
Type
College aantekeningen
Docent(en)
Onbekend
Bevat
Alle colleges

Voorbeeld van de inhoud

Information Retrieval
HC01 Introduction
Information retrieval (IR) is finding material (usually documents) of an unstructured nature
(usually text) that satisfies an information need from within large collections (usually
stored on computers). In this course, focusing on automated information retrieval.

History of Information Retrieval
Many years ago, books were sorted by author and the other books are sorted by title. Lots of
manual effort. Library was much more useful, and you could find stuff. Nowadays, we think
this method is not so user-friendly.

Automated Information Retrieval
The first idea for an automated system was described in 1945 by Vannevar Bush. He didn’t
actually build the system. In the 1960s the field of Information Retrieval emerged. Computers
became a bit more widespread.

Evolution of Information Retrieval
1960-70s: the era of Boolean Retrieval
- the simplest type of retrieval
- either true or false, what the query asks for or not
1975: The first Vector Space Model
- Still these days seen as the main model
1980s: Large document database systems run by companies became available (LexisNexis,
Medline)
1990s: FTP search (different protocol than HTTP) and the dawn of Web search (Lycos,
Yahoo, Altavista)
- Altavista is the most popular one. Enable web-users to search the whole web.

Information Retrieval in the 2000s
Google came along a revolutionized many things.
● Link Analysis and Ranking
● Question Answering
○ allow users to actually ask questions
● Multimedia IR (image and video analysis
● Cross-language IR
● Document Summarization
● Semantic Web Technologies (DBpedia)

Information Retrieval in the 2010s
Categorization and clustering, and recommendation systems:
● iTunes “Top Songs”
● Amazon “people who bought this also bought”
● IBM’s Watson system
● Netflix “Top Picks”
○ based on all data they have and your past behavior
What is Needed to Build a Search Engine?
Search Engine Components

, - What (software) components are needed to build a search engine such as Google?
- User Interface (list of links)
- Crawler
- needs a big database, stores all the pages so we have them locally.
- Document cache: replicating something from something else
- Gets all these documents and stores it here
- Preprocess
- Preprocess query into something you can work with
- Query execution
- Other type of structured database, index; purpose: optimizing query execution
- List of documents
- Post-processing

The Information Retrieval Framework
[model]

Information Retrieval versus Databases
Databases results are exact/clearly defined/structured data. Query is very well defined.
Single error results in a failure.

Information Retrieval results are not perfect/not what we are looking for/doesn’t necessarily
has to be the right result/unstructured data. Set of keywords (loose semantics). Errors are
tolerable.

What makes search engines good?
Search speed: Latency
Latency of actions (from fastest to slowest)
1. Main memory reference (read random byte from memory)
2. Zip 1KB of data (compress 1000 bytes in memory)
3. SSD random read (read random byte from solid-state drive)
4. Round trip within same datacenter (send one byte to another computer in the same
fast datacenter network and back
5. 2
6. Send packet CA → Netherlands → CA 6

, HC02 Indexing and Boolean Retrieval

Why can we be sure that the matrix is sparse?
- 1000 out of 500.000 = 0.2% meaning that 99.8% are zeros.

Inverted index
For each term (word) t, we must store a list of all documents that contain t
Identify each by a document ID: a serial document number. So you do not have to reference
to the title.
What data structure could we use for these identifier lists?
- Hash table/map, Dictionary (python)

We need variable-size lists (called “posting lists”):
- On disk, a continuous run of postings is best
- In memory, can use linked lists or variable-length arrays

Dictionary postings:
“ Brutus → “ 1,2,4 …
links: “→”

Inverted Index Construction
Input text: Friends, Romans, countrymen…
Tokenizer
Tokens Friends|Romans|countrymen|..
Normalization
Normalized: friend|roman|countryman|
Indexer
Inverted Index: friend → 1,2,4,5
roman → 1,5,11
countryman → 1, 32, 87, ..

We only want to go through every document once.

Indexer Step 1: Token Sequence
Extract sequence of <normalized tokens, document ID> pairs.

Indexer Step 2: Sort (main indexing step)
Sort by terms (and then by document ID)

Indexer Step 3: Dictionary and Postings
Multiple term entries in a single documents are merged:
- Split into Dictionary and Postings
- Document frequency information is added

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
cdh Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
43
Lid sinds
6 jaar
Aantal volgers
36
Documenten
13
Laatst verkocht
2 jaar geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen