100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Molecular principles of development summary 1-6

Beoordeling
4,3
(3)
Verkocht
2
Pagina's
35
Geüpload op
21-01-2019
Geschreven in
2018/2019

Summary molecular principles of development lecture 1-6. You can purchase the bundle 'molecular principles of development' to get the summary of all lectures and an overview of key concepts for the exam.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Onbekend
Geüpload op
21 januari 2019
Aantal pagina's
35
Geschreven in
2018/2019
Type
Samenvatting

Voorbeeld van de inhoud

Molecular principles of development
Book = Wolpert et al (5th edition)

Lecture 1: Basic concepts
Outline Wolpert chapter: 1, 2.1, 2.10, 3.1-3.2
Developmental biology = the development of the multicellular body
mistakes in early development leads to death

Identification of patterning genes: the power of forwards genetics
Drosophila model:
Forward genetics = start with mutations, look at what the mutations do and go after the most
interesting ones according to the phenotype.
Reverse genetics = make a mutation in gene of interest, then analyze the phenotype

Box 2A Wolpert 5th edition: more detail about this topic > in drosophila you have 4 chromosomes, you
can perform a separate screen per chromosome. People can apply some genetic tricks. You can find
genes which are mutated by looking at the phenotype.

Identifying major players in genetic model system:

Edwards Lewis, Christiane N-V won the Nobel price: used forwards genetics approach, to identify all
sort of genes that are involved in patterning.




- Gap genes (loss of these genes result in a reduced number of segments)
- Pair rule genes (loss allows only odd-number segments to develop)
- segment polarity genes (loss leads to segments with similar head and tail ends)
3 key players: which are involved in in segmentation of the embryo.
OVERVIEW OF DEVELOPMENT, MODEL SYSTEM LIFE
CYCLES
Life cycle drosophila:
 fertilized egg

 syncytial blastoderm
Sperm entry through micropyle (anterioir)
drosophila egg Is not completely round and has 2
different sides. It has already polarity.

Early on the nuclei divide but the cells don’t =
syncytium = bag of cells that contain a lot of nuclei.
Nuclear division without cytokinesis.

-cellularization after 14 cycles.


1

,So first you get the syncytium bag of cytoplasm > nuclei migrate to the periphery of cytoplasm >
syncytial blastoderm > cellular bastoderm.
Molecule can freely diffuse; syncytium allows for diffusion of proteins.
 gastrulation
Major morphogenic process of development: ball of cells becomes an
organism.
If there is one process that you could call the major morphogenetic process
of development it is gastrulation.
Obvious morphological segmentation = differentiation phase.
Figure 2.3 Wolpert 5th edition =Gastrulation and segmentation
But how do these segments arise during this process will be discussed later
 Larval stages
 hatch indo an adult fly
* whole cycle of life takes 9 days = very fast


Model system life cycles: zebra fish, frog and mouse
- it is easier to start with the frog and fish and then look at the mouse because easier to harvest and
understand.




Drosophila vs. vertebrate development


 Maternal axes and symmetry
Drosophila: Anterior-posterior (A-P), Dorsal-ventral (D-V)
Zebra fish , Xenopus = Animal-vegetal (radial symmetry)
mammals = no polarity (point-symmetry)
 Syncytium and cleavages
Drosophila: nuclear division, syncytium
Zebra fish: meroblastic divisions (division on top of the egg), yolk syncytial layer
frog xenopus, mouse: holoblastic divison (division in the egg)

 Early embryonic cells division time
Drosophila: 9 minutes (genome 140MBp) = very fast
Zebrafish: 15 min (genome 1,700MBp) = very fast
Xenopus: 25min (genome 1,560 MBp)
Mouse: 15-20hours (genome 2,720MBp)

2

,BODY AXES, PATTERNING
Embryonic patterning = process of establishing positional information at the molecular level among
similar cells: if cells arise from a single cell, how do they become different? How do they know what to
do?

Forming body axes: if a cell will just randomly divide we will end up as a ball of cells. Something
dramatic needs to happen to turn that ball of cells into body axes.
- Dorsal-ventral (D-V) = top //bottom
- anterior –posterior (A-P) = nose//tail
- medial-lateral = left //right (L-R)
All that starts with polarity/symmetry-breaking: this can be done in 2
ways:
- asymmetric cell division
- molecular gradients
 This all has to do with gene regulation: Patterning is not the same as differential gene
expression. Gene expression is involved but is not the same thing as patterning.

 Patterning= process (of symmetry breaking) which establishes differential gene expression
(amount otherwise similar cells) that is directly related to position within the embryo.
Examples: A-P, D-V, L-R. +/- 50 maternal-effect genes in drosophila set up A-P and D-V axes
Maternal factors set up the body axes
Maternal genes:
Bicoid (anterioir) = protein that inhibits translation of mRNA that
encodes the caudal protein.
Caudal protein = only in the posterior part of the embryo.
These are maternal genes: genes expressed in the oocyte, the
genes are already there before fertilization. Maternal products,
when the genes are expressed they are called maternal genes. A lot of them are expressed in
gradients.
So bicoid and caud al (from the mother) > the ratio of these two proteins already informs you where
you are in the cells, posterior or anterior axes.
Zygotic genes: As soon as the oocyte start to transcript/express their own genes after fertilization it
starts to respond to the activities of the maternal protein. > increased specificity and position.
These proteins will induce increased diversity, You have GAP
genes in drosophila that have multiple domains of expression
(because there is a gap in the expression level across the embryo)
GAP + pair-rule genes make a striped pattern.
fushi tarazu (transcription after fertilization) = transcription
factor, snail = transcription regulator, DNA = DAPI-stain.

The cells know where the segments are going to be formed. >




3

, Striped pattern.




GERM LAYERS, INDUCTION, FATE, DETERMINATION
Germ line = type of cell that processes cells from your production.
Not to confuse with Germ layers!
3 major germ layers in humans: 3 basic cell types that form an early embryonic development.
Box 1C, wolpart, 5th edition.
Endoderm: stomach, colon, liver, pancreas, lungs
intestines = the gut
Mesoderm: muscle, heart, blood
Ectoderm: surface epidermis, neural crest,
neural tube (brain, spinal cord)
Understanding what they are, and should
be able to know examples: skin is ectoderm,
muscle is mesoderm, and endoderm is organs
for example.



*Insect have their nerve system on their belly not on the back like as with vertebrates.
Fate maps tell what the progeny of cells will be
experiment: lineage tracing with fluorescent dye
inject a dye in a single cell of a blastomere and sit back and
watch. You can trace what this cell will give rise to > the
progeny of the cell.
The place of the cell in which you inject the dye will end up in
a certain position that is described by the fate map. The
signals which make the cell get to that certain position will be
later in life. This means that at the beginning the cell doesn’t know where it should go.
The cell hasn’t received any information.
There is a stage where the cell has received information to go to a certain position, but the position
of the cell can still change = specification. (Example: if you put a piece of your skin in muscle, it won’t
change. But if you do this in embryo’s, the cells can still change their fate if their exposed to different
environmental signals).
Fate: “we know what the cells (most likely) will give rise to – but the cells do not”
specified: “cells know what they will be, but can change their mind”
Determined: “cells know what they will be and will proceed no matter what”
Fate vs determination
Transplantation experiments:
a piece of the embryo is becoming most likely an eye. > That’s what the fate map would tell you.
If you put that piece of embryo somewhere else in the embryo, it would form a different piece in the

4

Beoordelingen van geverifieerde kopers

Alle 3 reviews worden weergegeven
3 jaar geleden

5 jaar geleden

6 jaar geleden

4,3

3 beoordelingen

5
2
4
0
3
1
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
filinevdbosch Radboud Universiteit Nijmegen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
51
Lid sinds
7 jaar
Aantal volgers
39
Documenten
26
Laatst verkocht
1 jaar geleden

Hey mede-student! Ik heb tijdens mijn bachelor biomedisch laboratoriumonderzoek en pre-master een groot aantal samenvattingen gemaakt. Mijn vrienden hebben hiervan al kunnen profiteren met een positief resultaat! Nu ik al mijn toetsen gehaald heb wil ik graag meer studenten helpen :)

3,3

25 beoordelingen

5
5
4
7
3
8
2
1
1
4

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen