100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Marketing Research Methods Notes

Beoordeling
-
Verkocht
-
Pagina's
37
Geüpload op
16-01-2024
Geschreven in
2023/2024

This is notes from the lectures and the book combined to have a clear summary of everything.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
16 januari 2024
Aantal pagina's
37
Geschreven in
2023/2024
Type
College aantekeningen
Docent(en)
Voerman, j.a.
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

1 – Conceptualization, Operationalization & Data Preparation

Academic research:
Hourglass model for scientific research:
 Introduction
o Problem introduction
o Problem statement and
o Research question(s)
 Literature review
o (Hypotheses &) conceptual model
 Research method
 Analysis and results
 Conclusion & discussion
o Scientific implications
o Management implications
o Limitations & further research (validity)

Where does research start:
1. Problem (often action oriented)
2. Research question (information oriented)
3. Literature
4. Conceptual model
5. Propositions (qualitative)/Hypotheses (quantitative)

Conceptualization:
=> ‘drawing boundaries around terms to make them tangible’
 What is meant with ‘X’ or ‘Y’ in this research
Goal => elimination of vagueness (how many cm is a so called ‘tall’ person) and ambiguity (‘I
bought a)
 Come to a conceptual model
o Concepts (& dimension)
 Note: a variable in the model is something that VARIES and is
measurable (using one or more indicators)
o Relations:
 Dependent/ independent
 Antecedents/ outcomes
 Moderating/ mediating variables

Operationalization:
 How should we measure concept X?
 Decide which empirical observations should be made to measure the existence of a
concept
 Standardised operationalisations are essential if different researchers have to take
similar measures of similar entities.
 Or: to define a concept or variable in such a way that we can measure it
quantitatively.
 translation into specific indicators and measuring questions.

,Collecting data:
 (population/ sampling/ non-response => generalizability)
 Exploratory/descriptive/causal research?
 Qualitative/quantitative?
 Survey?
 Experiment?
 Measurement level?
o On what scale did you measure your variable?




o




o

,Data Preparation:
Data analysis often comes in 2 stages:
1. Inspection and preparing data for actual analysis:
o Inspect data (items)
 Which variable/measurement scales/coding schemes
 Get a feeling for your data, descriptive, graphs
 Cleaning your dataset
 Oddities, missing/wrong values, outliers.
o Combining variables/items into new dimensions/ factors
2. Actual analysis, testing your hypothesis:
o Regression, cluster

Inspect data:
 Missing data
o Listwise deletion → but you’ll be missing a lot of data then.





o Pairwise → So only delete the missing variables if the rest is reliable.





 Weird values & outliers
o If impossible value → make it a missing value (or go back to respondent if
possible)
o Otherwise, outlier
 What’s the effect on analysis?
 Should we use in analysis?






, 2 – Factor Analysis

Marketing concepts are more often too complicated for 1 scales and are measured using
multi-item scales, e.g.:

These are called LATENT variables, or CONCEPTS or CONSTRUCTS

Yet, multi-item scales often have many (and overlapping) items which makes further analysis
complicated.
 Multi-item scales: A scale consisting of multiple items, where an item is a single question or
statement to be evaluated.
o
 Multicollinearity (if correlation is too high: if variables are highly correlated, it’s hard to
distinguish their individual effects in subsequent analyses)
 Complexity

So, data reduction & simplification:
1. Factor analysis → to test or to dig up the constructs.
o To reduce a large(r) set of variables into a smaller set of uncorrelated, on
beforehand unknown, factors or dimensions.
o To test a theoretically assumed known factor structure in a set of items
(“does the factor solution in my data comply with the assumed/ hypothesized
factor structure?”)
2. Reliability analysis → then use this to test.
o To test the reliability of the known/ found underlying dimensions (by
measuring the internal consistency of a known set of items in each
o dimension)
 After factor analysis (“Is the factor found ‘strong enough’ to continue
analysis with?”)
 After using a set of items validated as a scale by theory (“Is the
theoretical scale also validated or ‘strong enough’ in my research?”)

 Factor analysis: what is it about?
 Purpose:
o Reduction of a large quantity of data by finding common variance to:
 Retrieve underlying dimensions in your dataset, or,
 Test if the hypothesized dimensions also exist in your dataset.
 Variance → a measure of how data points differ from the mean.
 Common variance → amount of variance that is shared among a set of items. If
one goes up it is likely that the other will also go up (unless it’s a reverse scale).
 Two central questions:
1. How to reduce a large(r) set of variables into a smaller set of uncorrelated factors?
o Unknown number and structure
o Hypothesized number and structure
 Whether the hypothesized dimensionality is visible in my dataset
2. How to interpret these factors (= underlying dimensions), and scores on these
factors?

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
lamotte01 Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
36
Lid sinds
5 jaar
Aantal volgers
31
Documenten
9
Laatst verkocht
1 jaar geleden

4,6

5 beoordelingen

5
3
4
2
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen