100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary RMC including how to do it in R

Beoordeling
-
Verkocht
-
Pagina's
78
Geüpload op
29-10-2023
Geschreven in
2023/2024

Master Research Methods based on the course in 2023. My summary covers lectures, literature, and R instructions












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
29 oktober 2023
Aantal pagina's
78
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Inhoudsopgave

Midterm week 1 ............................................................................................................................................... 5

Chapter 2: The Simple Regression Model ........................................................................................................... 5
2.1 Scatterplots and conditional distributions ..................................................................................................... 5
2.1.1. Scatterplots .......................................................................................................................................... 5
2.1.2. A line through conditional means ........................................................................................................ 5
2.1.3 Errors of Estimate ................................................................................................................................. 5
2.2 The Simple regression model ........................................................................................................................ 5
2.2.1. The Regression Line ............................................................................................................................. 5
2.2.2. Variance, Covariance, and correlation ................................................................................................. 5
2.2.3 Finding the Regression Line .................................................................................................................. 6
2.2.4. Example computations......................................................................................................................... 6
2.2.5. Linear regression analysis by computer ............................................................................................... 6
2.3 The regression coefficient versus the correlation coefficient ......................................................................... 6
2.3.1. Properties of the Regression and Correlation Coefficients .................................................................. 6
2.3.2. Uses of the regression and correlation coefficients ............................................................................. 7
2.4 Residuals ....................................................................................................................................................... 7
2.4.1 The three components of Y ................................................................................................................... 7
2.4.2. Algebraic properties of residuals.......................................................................................................... 7
2.4.3. Residuals as Y adjusted for differences in X ......................................................................................... 7
2.4.4. Residual analysis .................................................................................................................................. 7

Chapter 3: Partial Relationship and the Multiple Regression Model .................................................................... 8
3.1. Regression analysis with more than one predictor variable ......................................................................... 8
3.1.1. An Example .......................................................................................................................................... 8
3.1.2. Regressors ............................................................................................................................................ 8
3.1.3. Models ................................................................................................................................................. 8
3.1.4. Representing a model geometrically .................................................................................................... 8
3.1.5. Model errors ........................................................................................................................................ 8
3.1.6. An alternative view of the model ......................................................................................................... 8
3.2. The Best-Fitting Model ................................................................................................................................. 8
3.2.1. Model estimation with Computer Software ......................................................................................... 8
3.2.2. Partial regression coefficients .............................................................................................................. 8
3.2.3. The regression constant ....................................................................................................................... 8
3.2.4. Problems with three or more regressors ............................................................................................. 8
3.2.5. The multiple correlation R .................................................................................................................... 8
3.3.3. The standardized regression coefficient .............................................................................................. 8
4.2 The ANOVA summary table........................................................................................................................... 8
4.2.1. Data = model + error ............................................................................................................................ 8
4.2.2. Total and regression sums of squares .................................................................................................. 8
4.2.3. Degrees of Freedom .................................................................................................................................. 9
4.2.4. Mean squares ......................................................................................................................................... 10
4.3 Inference about the multiple correlation..................................................................................................... 11
4.3.1 Biased and less biased estimation of Rsquared................................................................................... 11
4.2.3 Testing a hypothesis about tR ............................................................................................................. 11

Installing & loading packages ......................................................................................................................... 13

,How to… ......................................................................................................................................................... 13
Adding a Column to Your Datafile: .................................................................................................................... 13
Manually Calculating the Mean: ....................................................................................................................... 13
Manually Calculating the Predicted Mean: ....................................................................................................... 13
Manually Calculating the Residual: ................................................................................................................... 13
Manually Calculating the Mean Residual: ......................................................................................................... 13
Manually Calculating the Squared Residuals: ................................................................................................... 13
Manually Calculating the Mean Squared Residual: ........................................................................................... 13
Manually Calculating SSE (Sum of Squared Residuals): ..................................................................................... 13
Manually Calculating TSS (Total Sum of Squares): ............................................................................................ 14
Manually Calculating RSS (Regression Sum of Squares): ................................................................................... 14
Manually Calculating R-squared (R2): ............................................................................................................... 14
Manually calculating the F-statistic .................................................................................................................. 14

Midterm week 2 ............................................................................................................................................. 16

Installing & loading packages ......................................................................................................................... 16

How to… ......................................................................................................................................................... 16
Assumptions ..................................................................................................................................................... 16

Chapter 4: ...................................................................................................................................................... 18
4.1.2. Assumptions for Proper Inference ..................................................................................................... 18
4.4. The Distribution of and Inference about a partial regression coefficient .................................................. 18
4.4.1 Testing a Null hypothesis about Tb ..................................................................................................... 18
4.4.2 Interval Estimates for Tb ..................................................................................................................... 18
4.4.3 Factors Affecting the Standard Error of b ........................................................................................... 19
4.4.4 Tolerance ............................................................................................................................................ 19
4.7 Miscellaneous Issues in Inference ............................................................................................................... 21
4.7.1 How Great a Drawback is Collinearity? ............................................................................................... 21
4.7.2 Contradicting Inferences ..................................................................................................................... 21
4.7.3 Sample Size and Nonsignificant Covariates ........................................................................................ 21
4.7.4 Inference in Simple Regression (when k=1) ........................................................................................ 22

Chapter 5: Extending Regression Analysis Principles ...................................................................................... 22
5.1 Dichotomous regressors ............................................................................................................................. 22
5.1.1 Indicator or dummy variables ............................................................................................................. 22
5.1.2 Estimates of Y are Group Means......................................................................................................... 22
5.1.3. The regression coefficitien for an indicator is a Difference ................................................................ 22
5.1.4 A graphic representation .................................................................................................................... 22
5.1.5 A Caution About Standardized Regression Coefficients For Dichotomous Regressors ....................... 22
5.1.6 Artificial categorization of numerical variables................................................................................... 23

Chapter 7: ...................................................................................................................................................... 23
7.3 Selection Predictor Variables ...................................................................................................................... 23
7.3.1. Stepwise regression ........................................................................................................................... 23
7.3.2. All subsets regression ........................................................................................................................ 24
7.3.3 How Do Variable Selection Methods Perform? .................................................................................. 24

,Chapter 8: Assessing The Importance Of Regressors....................................................................................... 24
8.1 What Does It Mean For A Variable To Be Important? ................................................................................. 24
8.1.1. Variable Importance in Substantive or Applied Terms ....................................................................... 24
8.1.2. Variable Importance in Statistical Terms ............................................................................................ 24
8.3 Determining the Relative Importance of Regressors in a Single Regression Model .................................... 25
8.3.1 The Limitations of the Standardized Regression Coefficient .............................................................. 25
8.3.2 The Advantage of the Semipartial Correlation ................................................................................... 25
8.3.3. Some Equivalences among measures ................................................................................................ 25
8.3.4. Eta-Squared, Partial Eta-Squared, and Cohen’s f-Squared ................................................................. 26
8.3.5. Comparing Two Regression Coefficients in the Same Model ............................................................ 27

Chapter 9: Multicategorical Regressors .......................................................................................................... 28
9.1. Multicategorical variables as sets ............................................................................................................. 28
9.1.1. Indicator coding ................................................................................................................................. 28
9.1.2. Constructing Indicator Variables ........................................................................................................ 28
9.1.3. The Reference Category ..................................................................................................................... 28
9.1.4. Testing the equality of several means................................................................................................ 29
9.1.5. Parallels with Analysis of Variance ..................................................................................................... 29
9.1.6. Interpreting Estimated Y and the Regression Coefficients ................................................................. 29
9.2 Multicategorical regressors as or with covariates ...................................................................................... 29
9.2.1 Multicategorical Variables as Covariates ............................................................................................ 29
9.2.2 Comparing Groups and Statistical Control .......................................................................................... 29
9.2.3 Interpretation of regression coefficients ............................................................................................ 30
9.2.4. Adjusted Means ................................................................................................................................. 30
9.2.5. Parallels with ANCOVA ....................................................................................................................... 30
9.2.6. More Than One Covariate.................................................................................................................. 30

Chapter 16: Detecting and Managing Irregularities ........................................................................................ 30
16.1 Regression diagnostics ............................................................................................................................. 30
16.1.1. Shortcomings of eyeballing the Data ............................................................................................... 30
16.1.2. Types of Extreme Cases ................................................................................................................... 30
16.1.3 Quantifying leverage, distance, and influence .................................................................................. 30

Midterm week 3 ............................................................................................................................................. 32

Theorie ........................................................................................................................................................... 32
Difference correlation and causation ............................................................................................................... 32
Spurious effect .................................................................................................................................................. 32
Theory – Mediation .......................................................................................................................................... 32
Difference spurious effect & mediation effect .................................................................................................. 33
Different types of methods to test mediation ................................................................................................... 34
Baron & Kenny ............................................................................................................................................. 34
How to calculate mediation: ........................................................................................................................ 34
Sobeltest ...................................................................................................................................................... 35
Bootstrap ..................................................................................................................................................... 35
Bootstrapping and Confidence Intervals for Effect Sizes: ............................................................................ 36
Different Effect Size Metrics:........................................................................................................................ 36
Relative Effect Sizes:..................................................................................................................................... 37
Stability and Sample Size: ............................................................................................................................ 37
𝑅² (Proportion of Variance Explained by Indirect Effect): ............................................................................ 37
Evaluation of methods ...................................................................................................................................... 38

, Midterm week 4 ............................................................................................................................................. 39

Theory ............................................................................................................................................................ 39
Moderation:...................................................................................................................................................... 39
Significance Testing: ......................................................................................................................................... 39
Modeling with Interaction: ............................................................................................................................... 40

Moderation with the PROCESS function ......................................................................................................... 40
Moderation with the PROCESS function - Interpretation .................................................................................. 40

Moderation through hierarchical regression analysis ..................................................................................... 41

Visualization ................................................................................................................................................... 41
Plotting Regression Coefficients: ...................................................................................................................... 41
Plotting Conditional Effects:.............................................................................................................................. 41
Using Johnson-Neyman Plot: ............................................................................................................................ 42

The four primary levels of measurement........................................................................................................ 43

Open question example answer ..................................................................................................................... 44

Midterm week 5 ............................................................................................................................................. 45
Analysis of Variance (ANOVA)........................................................................................................................... 45
Assumptions ..................................................................................................................................................... 46
Contrasts .......................................................................................................................................................... 47
Choosing Contrasts in ANOVA ..................................................................................................................... 47
Additional Testing Approaches .................................................................................................................... 47
Splitting the Variance ................................................................................................................................... 48
Non-Orthogonal Contrasts........................................................................................................................... 48
Post-Hoc Tests and Corrections ................................................................................................................... 48
Variance ............................................................................................................................................................ 49
Mean squares & F-test ..................................................................................................................................... 51
Effect sizes ........................................................................................................................................................ 52
Marginal vs. Estimated marginal means .......................................................................................................... 52

Midterm week 6 ............................................................................................................................................. 53

16.2 When to use MANOVA ........................................................................................................................... 53

Slides:............................................................................................................................................................. 60

Plot uitleg ....................................................................................................................................................... 66

Tutorial........................................................................................................................................................... 69
€6,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
maraoltmans1
3,0
(1)

Maak kennis met de verkoper

Seller avatar
maraoltmans1 Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
3
Lid sinds
2 jaar
Aantal volgers
1
Documenten
5
Laatst verkocht
1 jaar geleden

3,0

1 beoordelingen

5
0
4
0
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen