100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Linear Optimisation _ D0H45A

Beoordeling
-
Verkocht
4
Pagina's
26
Geüpload op
12-01-2023
Geschreven in
2020/2021

Worstelt u met het begrijpen van de complexe theorie en concepten van Linear Optimisation? Zoek niet verder - deze uitgebreide samenvatting is hier om de dag te redden! Deze document herneemt wat er gezien werd in alle slides, hoorcolleges en werkcolleges, zodat je eindelijk de duidelijke theoriesamenvatting die je moet kennen in het examen goed kunt gebruiken. Met deze LP samenvatting kun je afscheid nemen van urenlang geestdodend studeren, en hallo tegen een stressvrije examenvoorbereiding. Disclaimer: dit document is een samenvatting en kan niet als enig studiemateriaal worden beschouwd.

Meer zien Lees minder
Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Heel boek samengevat?
Ja
Geüpload op
12 januari 2023
Aantal pagina's
26
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Linear Optimization
Part 1: Linear Programming Models

Operations Research

Operation research: Decision making tool based on mathematical modelling and analysis
used to process the transformation of data into insights into making better decisions

Model: structure which has been built purposely to exhibit features and characteristics of
some other object.

Mathematical model: model that involves a set of mathematical relationships which
correspond to the characterization of the relationships in the real world.
Reasons we need them:
- Get a greater understanding of the object we are modelling
- To simplify
- To analyze mathematically
- To experiment

By using mathematical model, we are able to make use of the share in similar characteristics
of settings fundamentally different in order to solve them easier and maybe similarly.

Modelling process

,Decision making model

When building them have to ask 3 questions:

1. What are the decision alternatives? Which decisions do we have to make?
2. Under what restrictions is the decision made?
3. What is an appropriate objective criterion for evaluating the alternatives? How can
we say this decision is better than another one?


1. Decisions variables: the unknowns that should be determined by the decision maker
Parameters: technical factors which are fixed and not under control of the decision
maker
2. Constraints: physical limitations
3. Objective function: measure used to compare different decisions.


Can represent all this information mathematically:

Mathematical Programming problem

MAX (MIN) 𝑓(𝑥$ … 𝑥& )
s.t. 𝑔) (𝑥$ … 𝑥& ) ≤, =, ≥ 𝑏) 𝑖 = 1, … 𝑚
𝑥3 ∈ 𝑋3 𝑗 = 1, … 𝑛


ð Linear Optimization problem if 𝑓 and 𝑔) are linear for 𝑖 = 1, … 𝑚
ð Continuous Optimization problem if all variables 𝑥3 for 𝑗 = 1, … 𝑛 are continuous.

Will focus on:
ð Single objecting problems: minimize or maximize one objective function
ð Deterministic problem: all parameters are known

Linear programming (linear and continuous functions)

Assumptions:

1) Proportionality & Additivity (Linear problem)
- Contribution of decision variables is proportional to the value of that variable
- Contributions of decision variables are independent and total contribution is the sum
of the individual contributions.
2) Divisibility (Continuous problem)
- Decision variable allowed to take fractional values
3) Certainty (deterministic problem)
- Input parameters are known with certainty

, Characteristics:

ð Decision variables 𝑥$ … 𝑥& are continuous
ð Objective function is linear: 𝑐$ 𝑥$ + ⋯ + 𝑐& 𝑥& with 𝑐$ … 𝑐& the objective function
coefficients
ð Constraints are linear inequalities or equations: 𝑎)$ 𝑥$ + ⋯ + 𝑎$& 𝑥& ≥ 𝑜𝑟 = 𝑜𝑟 ≤ 𝑏)
with 𝑎)$ … 𝑎)& the technical coefficients and 𝑏) the right-hand side of constraint


Feasible solution: any vector (𝑥$ … 𝑥& ) that satisfies all constraints
Feasible set / feasible region: set of all feasible solutions
Optimal solution: feasible solution that yields the best objective function value
Optimal value: best objective function value

Steps to build a LP:

Step 1: determine the decision variables
Step 2: express the objective function in term of the decision variable
Step 3: express the constraints in terms of decision variables


When we cannot have fractional solutions, we will have an integer programming problem.
Need to define the constraints as 𝑥) integer for 𝑖 = 1, … 𝑛. !! we cannot obtain these just by
rounding the LP optimal solution!!

In reality many capital budgeting problems violate the divisibility assumption cause in many
of them it is unreasonable to allow 𝑥) to be fractions => will get a binary modelling problem:
0 or 1, invest or not.

Blending models: typical application of mixed integer-linear programming. Blending of
several resources or materials in order to create one or more products corresponding to a
demand. (see example slide 49)


Dynamic models: decision maker makes decisions at more than one point in time. The
decisions made in the current period influence the decisions made during future periods.
(see example slide 57)

In real life are dynamic models more complex.
- Cost may not be a linear function of quantity (Proportionality violated)
- Future demands may not be known with certainty (Certainty violated)
- Quarter to quarter variations in quantity may result in extra costs (production
smoothing costs)
- Salvage value: value assigned to the inventory left at the end of the last period as an
indicative worth of the final period’s inventory.

Take a close look at all the examples!
€6,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
chlodewandeleer Katholieke Universiteit Leuven
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
17
Lid sinds
4 jaar
Aantal volgers
14
Documenten
9
Laatst verkocht
9 maanden geleden
Summary Ultra

Vind je snelkoppeling naar succes - krijg nu samenvattingen!

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen