100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting OPO basismodellen SV: 16/20 eerste zit

Beoordeling
4,7
(6)
Verkocht
40
Pagina's
58
Geüpload op
14-01-2022
Geschreven in
2021/2022

Voor het vak: operationeel onderzoek, basismodellen in de tweede bachelor van TEW. Dit document vat alle leerstof samen in korte samenvattingen. Er worden verschillende voorbeeldoefeningen gegeven en uitgewerkt. Ook geschreven notities van de lessen zit er vanachter bij. Hierin worden alle voorbeelden van de cursus uitgebreid geschreven en uitgewerkt. Eerste zit een 16/20 gehaald.

Meer zien Lees minder
Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Hoofdstuk 2-3-4-5-7-8-9
Geüpload op
14 januari 2022
Aantal pagina's
58
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Basismodellen: overzicht
Deel 1: Inleiding en modelleren

Algemene setup van een LP-probleem:
Probleemstelling: doelfunctie + beslissingsvariabelen definiëren
Grenzen: beperkingen van indien geen beperkingen is de doelfunctiewaarde ∞!
● Capaciteit nooit een strikte ongelijkheid (< of >) gebruiken!
● Geld redundante beperking = beperking niet nodig!
● Tijd
● Vraag
● …
Vragen: Hoeveel produceren van elk product? Maximale of minimale doelfunctiewaarde? Hoeveel betalen voor extra
capaciteit? Effect van verlies van tijd, capaciteit, … ? Hoeveel winst minstens maken op elk product?
Oplossing: met lineaire programmering, grafisch of algoritmisch (lindo)


Assumpties van een LP-probleem:
● Lineariteit: lineaire functie van de beslissingsvariabelen is ≥, = 𝑜𝑓 ≤ constante
● Deelbaarheid: beslissingsvariabelen kunnen fractioneel zijn
● Zekerheidsassumpties


Investeringsprobleem met NAW:
B = bedrag op tijdstip 0
B (1 + r) = bedrag op tijdstip 1
𝑇 𝑐𝑡
𝐵
NAW = 𝑡 → NAW in functie van cashflows = ∑ 𝑡
(1 + 𝑟) 𝑡 = 1 (1 + 𝑟)

Cashflows = 𝑐𝑡


Enkele tips:
● Indien de gegeven kosten per product kommagetallen zijn, vermenigvuldig deze met 10/100/… zodat ze gehele
getallen worden in de doelfunctie. Dit is makkelijker om mee te rekenen!
● Wanneer je als uitkomst kommagetallen uitkomt (deelbaarheid assumptie) en deze afrond, dan maak vind je
slechts een ‘heuristiek’.
● Vergeet de samenhang tussen de variabelen niet bij het definiëren van de grenzen, alles wat uit gaat moet eerst
in komen!


Deel 2: LP-problemen oplossen

Notatie matrix en vectoren: met vector = geordende lijst van getallen/scalars (scalar = 1 getal hierin)
A= ( 𝑎11 ... 𝑎1𝑛
𝑎𝑚1 ... 𝑎𝑚𝑛 ) → m x n matrix
Rijvector: m = 1
Kolomvector: n = 1 indien er ‘vector’ wordt geschreven verwijzen we automatisch naar een kolomvector!

1

, 0 vector: vector met alle componenten gelijk aan 0 vectoren aangeduid door een kleine vetgedrukte letter ⇔ scalar
zal cursief (niet vet) worden weergegeven
𝑛
Transpose matrix: A’ = ∑ 𝑥𝑖𝑦𝑖 formule = inwendig/scalair product
𝑖=1
2 2
Lengte van de vector: ||(𝑥1, 𝑥2, ... 𝑥𝑛)|| = 𝑥1 + ... + 𝑥𝑛
Scalair/inwendig product: x’y of y’x = ||𝑥|| . ||𝑦|| . 𝑐𝑜𝑠 θ met θ de hoek tussen vector x en vector y en
→ positief voor 0° ≤ θ ≤ 90°, negatief voor 90° ≤ θ ≤ 180°, 0 voor θ = 90°


Grafisch oplossen van LP-probleem:
Doelfunctie en beperkingen zijn gegeven.
STAP 1: bepaal de oplossingsruimte op je grafiek, teken alle beperkingen
STAP 2: uit de doelfunctie haal je de normaalvector, BV: max 3x1 + 4x2 → normaalvector (3,4)
STAP 3: definieer voor normaalvector een niveaucurve: π(𝑧) = {(𝑥1, 𝑥2) | 𝑧)} en vul een ‘willekeurig’ getal (Y) in π(𝑌)
STAP 4: teken deze niveaucurve op de grafiek, hij zou loodrecht moeten staan op de normaalvector
→ Indien je maximaliseert zal je zoveel mogelijk naar boven willen gaan op de normaalvector, indien je minimaliseert wil
je zoveel mogelijk naar onder gaan op de normaalvector.


Dimensies van een LP-probleem:

n=2 n=3 Algemene n

Soort tekening Rechte Vlak (grens) Hypervlak

Oplossingsruimte Halfvlak veelhoek, Halfruimte veelhoek Halfruimte veelhoek,
polyhedron polyhedron

Optimum Hoekpunt Hoekpunt ???


𝑛
Convexe verzameling: S ⊂ 𝑅 is convex indien voor alle twee punten in 2, het lijnstuk dat de twee punten verbindt
volledig in S ligt (vierkant, cirkel, vijfhoek zijn convex → donut is niet convex).
→ ∀𝑥, 𝑦 ∈ 𝑆, ∀λ ∈ [0, 1]: λ𝑥 + (1 − λ)𝑦 ∈ 𝑆
Extreem punt: 𝑥 ∈ 𝑆 is een extreem punt indien S een convexe verzameling is. Indien S een veelvlak is, dan zijn de
extreme punten de hoekpunten. We kunnen x als een hoekpunt beschouwen indien er geen 2 andere punten (y,z) zijn die
ook in de verzameling liggen, verschillend zijn van x, en zodanig dat x toch op het lijnstuk ligt tussen y en z.
→ ∄ 𝑦, 𝑧 ∈ 𝑆, λ ∈ [0, 1]: 𝑦 ≠ 𝑧 , 𝑧 ≠ 𝑥 𝑒𝑛 𝑥 = λ𝑦 + (1 − λ) 𝑧
Enkele stellingen:
● Het toegelaten gebied van een LP-probleem is een convexe verzameling
● Voor elk LP-probleem dat een eindige optimale oplossingen heeft, bestaat er ook een extreem punt van het
toegelaten gebied dat optimaal is
● Het toegelaten gebied van een LP-probleem bevat slechts een eindig aantal extreme punten


Extra: in klassieke optimalisatie zoeken we de ‘vrije’ extrema, er zijn dan geen beperkingen/randvoorwaarden.



2
€8,79
Krijg toegang tot het volledige document:
Gekocht door 40 studenten

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Beoordelingen van geverifieerde kopers

Alle 6 reviews worden weergegeven
10 maanden geleden

1 jaar geleden

11 maanden geleden

2 jaar geleden

2 jaar geleden

Goede samenvatting die alles omvat.

2 jaar geleden

4,7

6 beoordelingen

5
5
4
0
3
1
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
lunazita Katholieke Universiteit Leuven
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
129
Lid sinds
4 jaar
Aantal volgers
83
Documenten
2
Laatst verkocht
2 maanden geleden

4,2

13 beoordelingen

5
9
4
0
3
3
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen