continue uniforme 2 parameters, a en b, begin- en eindpunt van het interval waarbinnen
analoog aan de tegenhangen vh discrete geval de toevalsveranderlijke altijd ligt.
De dichtheid is:
fX(x) = 1/(b − a) als a ≤ x < b en fX(x) = 0 als x ∉[a, b[
E(X) = (a + b)/2
var(X) = (b − a)²/12
exponentiële de verdeling van de wachttijd T op de eerste aankomst in een Poisson-proces
bvb.: de tijd die een winkelier moet wachten op zijn eerste klant
cum. v. f. vinden we via de overlevingsfunctie: de kans dat de wachttijd groter is dan t,
met t ≥ 0, is de kans dat op ogenblik t nog geen (nul) aankomsten zijn geregistreerd
Het aantal aankomsten is Poisson verdeeld met parameter λt, dus:
−λt
1 − FT(t) = P(T > t) = e , voor t ≥ 0
Door afleiden vinden we, voor λ > 0
−λt
fT (t) = λe als t ≥ 0 en fT (t) = 0 als t < 0
E(T) = 1/ λ
var(T) = 1/ λ²
deze verdeling is geheugenloos bvb.: Als een wachttijd exponentieel verdeeld is, dan betekent dit dat alle wachttijd tot
op een bepaald ogenblik vergeefs is geweest: de verwachte resterende wachttijd tot
de eerste gebeurtenis is dezelfde als in het begin. Wiskundig drukt men dit uit als:
P(T > s + t|T > s) = P(T > t)
De stelling geldt ook omgekeerd: als T geheugenloos is, dan moet T exponentieel verdeeld zijn
, Erlang De wachttijd tot de rde aankomst in een Poisson-proces is Erlang verdeeld
(uitbreiding van het "wachttijden experiment") De tijd tussen de nde en n + rde aankomst is natuurlijk eveneens Erlang verdeeld
De dichtheidsfunctie is gelijk aan, voor parameter λ > 0 en r > 0 een geheel getal,
r−1 r −λt
fT (t) = t λ e / (r − 1)! , als t ≥ 0 en fT (t) = 0 als t < 0
een Erlang-verdeling is altijd rechtsscheef
Gamma uitbreiding van de Erlang-verdeling voor niet-gehele waarden van parameter r
(het gaat dus niet meer om bvb een wachttijd (dat is geheel))
x−1 -u
gammafunctie Γ(x) = 0 ʃ ∞ u e du.
(we moeten hier nooit zelf mee rekenen) omdat id dichtheidsfunctie vd Erlang-verd. een faculteit staat, moeten we eerst de
faculteitsfunctie uitbreiden naar niet-gehele get. Die uitbreiding is de gammafunctie
r−1 r −λx
fX(x) = x λ e / Γ(r) , als x ≥ 0 en fX(x) = 0 als x < 0
E(X) = r λ
var(X) = r / λ²
Beta model voor kansvariabelen die enkel waarden kunnen aannemen op het interval [0, 1]
Indien Y waarden aanneemt op het interval [a,b], dan kunnen we X = (Y−a)/(b−a)
definiëren en X zal dan waarden aannemen tussen 0 en 1, en dus mogelijk
gemodelleerd kunnen worden als een Beta-verdeelde veranderlijke
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper julienvandecasteele. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €2,99. Je zit daarna nergens aan vast.