100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Interview

Maths Examinable proofs

Beoordeling
-
Verkocht
1
Pagina's
36
Geüpload op
05-12-2021
Geschreven in
2021/2022

This document contains all examinable proofs (CAPS) and the acceptable reasonings in Euclidean Geometry. There is a blank copy attached to print (if you want it in your own handwriting) as well as one with the solutions.

Instelling
Vak












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak
Schooljaar
200

Documentinformatie

Geüpload op
5 december 2021
Aantal pagina's
36
Geschreven in
2021/2022
Type
Interview
Bedrijf
Onbekend
Persoon
Onbekend

Onderwerpen

Voorbeeld van de inhoud

Examinable Gr11 & 12 Maths Proofs: page 1 of 16 pages

Name: _________________ Surname: _____________________ Class ______
1) Number patterns: PAPER 1
a) Sum to 𝑛 terms in an arithmetic series
b) Sum to 𝑛 terms in a geometric series
2) Trigonometry: PAPER 2
a) Sine rule
b) Cos rule (V1 + V2)
c) Area rule
d) Compound Angles
3) Euclidean Geometry: PAPER 2
a) Theorem 1: The line segment joining the centre of a circle to the midpoint
of a circle is perpendicular to the chord.
b) Theorem 2: The angle which the arc of a circle subtends at the centre is
double the angle it subtends at any given point on the
circumference.
c) Theorem 5: The opposite angles of a cyclic quadrilateral are
supplementary.
d) Theorem 8: The angle between the tangent to a circle and the chord
drawn from the point of contact is equal to the angle
subtended by the chord in the alternate segment.
e) Theorem 9: A line drawn parallel to one side of a triangle divides the
other two sides proportionally.
f) Theorem 10: Equiangular triangles are similar.

,Sum to 𝑛 terms of an arithmetic series. page 2 of 16 pages

Consider an arithmetic sequence of 𝑛 terms with 1st term 𝑎, 𝑛𝑡ℎ term 𝑙 and
common difference 𝑑. Prove that in any arithmetic series the sum of the first
𝑛 𝑛
𝑛 terms is 𝑆𝑛 = (𝑎 + 𝑙) or 𝑆𝑛 = [2𝑎 + (𝑛 − 1)𝑑].
2 2

________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________

,Sum to 𝑛 terms of a geometric series. page 3 of 16 pages

Consider a geometric sequence of 𝑛 terms, 1st term 𝑎 and common ratio 𝑟.
Prove that in any geometric series the sum of the first 𝑛 terms is expressed by
𝑎(1−𝑟 𝑛 ) 𝑎(𝑟 𝑛 −1)
𝑆𝑛 = OR 𝑆𝑛 = .
1−𝑟 𝑟−1
________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________

,Proof of the Sine Rule: page 4 of 16 pages
𝐶




𝐴 𝐵
sin 𝐴̂ sin 𝐵̂
Prove that for any acute-angled ∆𝐴𝐵𝐶; =
𝑎 𝑏
Solution:
𝐶




𝐴 𝐵


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________

, Proof of the Cos Rule: (ONE VERSION) page 5 of 16 pages

Using the sketch provided, prove that in any acute-angled
∆𝐴𝐵𝐶; 𝑎2 = 𝑏 2 + 𝑐 2 − 2𝑏𝑐 cos 𝐴
𝐵( ; ) Note (not part of cos rule)

sin 𝐴 =

∴ 𝐵𝐷 =

cos 𝐴 =
𝐶 𝐴
∴ 𝐴𝐷 =
COORDINATES: _______________
_______________
________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


________________________________________________________________


Similarly: __________________________________________________


__________________________________________________
€2,61
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
kalebroodt

Maak kennis met de verkoper

Seller avatar
kalebroodt Cape Peninsula University of Technology
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
4 jaar
Aantal volgers
3
Documenten
49
Laatst verkocht
2 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen