100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

JADS Premaster - Data-structures and Algorithms Summary

Beoordeling
-
Verkocht
2
Pagina's
21
Geüpload op
10-10-2021
Geschreven in
2021/2022

Summary for the Data-structures and Algorithms course of the Premaster Data Science and Entrepreneurship.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
10 oktober 2021
Aantal pagina's
21
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

1. Mathematical Rules
Square Root Rules logc (ab ) = b · logc (a)
√a = a1÷b
b
logb (a) = logc (a) ÷ logc (b)
logc (1 ÷ a) = − logc (a)
Fraction Rules logc (c) = c
a b a+b
c + c = c logc (1) = 0
a
c − bc = a−bc
a b a·d c·b Summation Rules
c + d = c·d + c·d = a·d+c·b
c·d k
a b a·d c·b a·d−c·b ∑ f (i)
c − d = c·d − c·d = c·d is the sum of f (i) between j and k
i=j
a
c · bd = a·b
c·d 10 10
a
c ÷ d = ac · db = a·d
b
c·b
∑ 5i = 5 ∑ i2
2
common factor sum
i=1 i=1
n n
Exponent Rules ∑ 10 = 10 ∑ 1 = 10n constant sum
ca · cb = ca+b i=1 i=1
ac · bc = (a · b)c k l k

ca / cb = ca−b
∑ f (i) = ∑ f (i) + ∑ f (i) splitting sum
i=j i=j i=l+1
ac ÷ bc = (a ÷ b)c n n
(ca )b = ca·b ∑ (n − i) = ∑ i reverses sum
c−a = 1 ÷ ca i=0 i=0
n
c0 = 1 ∑i= n(n+1)
is arithmetic series O(n2 )
2
c1 = c i=1
0c = 0 n
q n+1 −1
∑ qi = q−1 is geometric series O(q n )
i=0
Logarithm Rules n n
logc (a · b) = logc (a) + logc (b) ∑ 1
i =∫ 1
x · dx is harmonic series O(log n)
logc (a ÷ b) = logc (a) − logc (b) i=1 1



2. Mathematical Proofs
Writing Proofs
● State the proof techniques used (i.e. loop invariant, induction, etc.)
● Keep a linear flow
● Describe every step clearly in words
● Don’t use complicated notation
● Make sure your assumptions are actually obvious
● Finish your proof



1

, Direct Proof
Proving a statement by using a sequence of manipulations (i.e. p ⇒ q )

Example:
If n is an odd integer then n2 is odd.

We assume that n is odd.
n = 2k + 1
n2 = (2k + 1)2 = (2k)2 + 2 · (2k) + 12 = 2 · (2k 2 + 2k) + 1

2
Thus n2 is odd, since it has the form 2k ′ + 1 with k ′ = (2k + 2k) .


Contraposition Proof
Proving a statement by using its inverse (i.e. p ⇒ q by not q ⇒ not p )

Example:
For integer n , if 3n + 2 is odd then n is odd.

We assume that if n is even, then 3n + 2 is even.
Solve with regular direct proof...

Contradiction Proof
Proving a statement by assuming it’s false (i.e. to prove q assume not q)

Example:
This statement is false by definition of the big-O notation. We will prove that this statement is false by
contradiction. There exists positive constants c and n0 such that 0 ≤ n2 log2 (n) ≤ cn2 for all n ≥ n0

0 ≤ log2 (n) ≤ c , we know that logarithmic functions grow faster than constants. Thus for any positive
value of c and n0 , there will exist such that n ≥ no with log2 (n) > c

We have reached a contradiction and the only conclusion can be that our assumption must be false.
Hence, the statement must be false.

Example Proof
Proving a statement by fulfilling a condition and giving a example (i.e. there is an integer x such
that x < 100 )

Example:
This statement is true by definition of the big-Θ notation. By definition n2 − 5n + 10 = Θ(n2 ) , if there exists
positive constants c1 , c2 and n0 such that 0 ≤ c1 n2 ≤ n2 − 5n + 10 ≤ c2 n2 for all n ≥ n0




2

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
tomdewildt Jheronimus Academy of Data Science
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
29
Lid sinds
4 jaar
Aantal volgers
13
Documenten
22
Laatst verkocht
6 maanden geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen