100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary - Customer and Marketing Analytics (E_MKT_CMA)

Beoordeling
-
Verkocht
-
Pagina's
20
Geüpload op
15-10-2024
Geschreven in
2024/2025

Each lecture is summarized in an 18-page document called 'Lecture summaries'. The steps for factor analysis, linear regression & logistic regression are described in additional insightful summaries, also uploaded on my profile. Find the bundle for €10 in my profile for a discount. Good luck!

Meer zien Lees minder










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
15 oktober 2024
Aantal pagina's
20
Geschreven in
2024/2025
Type
Samenvatting

Voorbeeld van de inhoud

Lecture week 1 - Introduction
Independent variable: The variable that is manipulated or controlled to observe its effect on the
outcome.

Dependent variable: The variable that is measured or observed to assess the effect of the independent
variable.

Levels of measurement (measurement scales):

 Nominal (unranked groups)
 Categorical (ranked groups)
 Interval (comparative distances)
 Ratio (true zero)

Types of data:

 Quantitative research: Involves numerical data and statistical analysis to quantify variables and
identify patterns (e.g., surveys, experiments). Good for:
o Profiling detailed usage and behavior.
o Highlighting variations between different sub-groups.
o Precisely measuring consumer preferences for different products and services.
o Measuring the exact priorities consumers attach to different product features.
 Qualitative research: Involves non-numerical data to explore concepts, opinions, or experiences
in depth (e.g., interviews, focus groups). Good for:
o Mapping the customer’s overall range of behavior and attitudes.
o Pinpointing the motivations behind people’s behavior.
o Stimulating new and creative ideas.
o Providing a forum for fresh creative thinking.

Research designs:

 Exploratory research: Conducted to investigate a problem that is not well understood, aiming to
gain insights and generate ideas (e.g., literature reviews, interviews).
o Purposes:
 Increase familiarity with problem.
 Clarify concepts.
 Develop specific hypotheses.
o Approaches:
 Literature survey.
 Experience/key informant survey.
 Case studies.
 Focus groups.
 Descriptive research: Aims to describe characteristics of a population or phenomenon, often
answering the "who, what, where, when" questions (e.g., surveys, case studies).
o Purposes:
 Describe the characteristics of certain groups.

,  Estimate the proportion of people in a specified population who behave in a
certain way.
 Examine associations between two or more variables.
 Make specific predictions.
 Causal research: Seeks to identify cause-and-effect relationships between variables (e.g.,
experiments, controlled studies).
o Approaches:
 Laboratory experiments.
 Field experiments.

All methods taught in this course are descriptive by design.

Data sources:

 Secondary data: Data that has already been collected by others and is used for a different
purpose (e.g., government reports, company records).
o Syndicated research: A type of secondary data collected and sold by research firms to
multiple clients (e.g., market reports).
 Primary data: Data collected directly by the researcher for the specific research project at hand
(e.g., surveys, experiments).

Lecture 2 – Guest lecture
Canceled.

Lecture 3 – Reliability, Validity, Dimensionality
(Factor Analysis)
Measurement involves assigning numbers to characteristics based on predefined rules.

Scaling refers to placing objects along a continuum (e.g., rating brand attitudes).

Different analysis techniques are used for different measurement scales:

 Tests that describe the relationship between variables but do not imply causality:
o DV: Nominal → Chi-squared test (used to check for associations between categorical
variables).
o DV: Interval & ratio → Pearson correlation coefficient (measures the strength and
direction of a linear relationship between continuous variables).
 Tests that estimate relationships between variables and, under certain conditions, can be used to
infer causality:
o DV: Nominal → Logistic regression (used to predict the probability of a binary outcome
and estimate the influence of predictors).
o DV: Interval & ratio → (Multiple) linear regression (used to predict a continuous
outcome based on one or more predictors).

, Types of Scales:

 Comparative scales: Respondents compare objects (e.g., rank order or paired comparisons).
o Rank order scaling: Respondents rank a list of items in order of preference or
importance.
 Example: "Rank these brands from 1 to 3 (1 = most preferred).
o Paired comparison scaling: Respondents choose between two items at a time.
 Example: "Do you prefer Brand A or Brand B?"
o Constant sum scale: Respondents allocate a fixed number of points among items based
on importance or preference.
 Example: "Distribute 100 points across these products based on how much you
like them."
 Non-comparative scales: Objects are rated independently (e.g., Likert scale, semantic differential
scale).
o Likert scale: Respondents rate their level of agreement with statements on a scale (e.g., 1
= strongly disagree, 5 = strongly agree).
 Example: "I am satisfied with Brand A: 1 (Strongly Disagree) – 5 (Strongly Agree)."
o Semantic differential: Respondents rate an object on a scale between two opposite
attributes.
 Example: "Rate Brand A: 1 (Unpleasant) – 7 (Pleasant)."
o Continuous rating scale (slider scale): Respondents place a mark on a continuous line to
indicate their rating of an object.
 Example: "Rate your satisfaction with Brand A by sliding from 0 (extremely
unsatisfied) to 100 (extremely satisfied)."



Multiple item measurement:

 Using multiple items to measure a construct (e.g., impulsive buying tendency) improves reliability
(consistent results) and validity (accurately measuring what is intended).
 Single-item scales may suffice for simple, objective constructs (e.g., age).



Measured scores can be broken down into 3 separate components:

Xo = Xt + Xs + Xe

Xo = observed score (e.g., your IBT-score)

Xt = true score (e.g., your real impulsive buying tendency)

Xs = systematic error (non-random error) (e.g., social desirability bias)

Xe = random error (e.g., being distracted for a moment, mood)
€7,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
rwsmits

Ook beschikbaar in voordeelbundel

Thumbnail
Voordeelbundel
Customer and Marketin Analytics - Exam preparation bundle (summaries)
-
1 4 2024
€ 17,96 Meer info

Maak kennis met de verkoper

Seller avatar
rwsmits Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
3 jaar
Aantal volgers
0
Documenten
7
Laatst verkocht
1 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen