1
, CHAPTER 1 mf
Section 1.1 Solutions --------------------------------------------------------------------------------
mf mf mf
1 x 1 x
m f m f m f m
f m f m f m f
1. Solve for x:
m f mf mf m f mf 2. Solve for x:
m f mf mf m f mf
2 360∘ 4 360∘
360∘ 2x, so that x 180∘ .
mf mf m f mf m f mf mf mf 360∘ 4x, so that x 90∘ .
mf mf m f mf m f mf mf mf
1
x 2 x
3. Solve for x: 4. Solve for x:
m f m f m f m f m f m f
m f mf mf m f mf mf m f mf mf m f m f mf
3 360∘ 3 360∘
360∘ 3x, so that x 120∘ . (Not
mf mf mf mf m f mf mf mf mf 720∘ 2(360∘ ) 3x, so that x 240∘
mf mf mf mf mf mf mf m f mf mf mf
e: The angle has a negative measure
mf mf mf mf mf mf mf . (Note: The angle has a negative mea
mf m f mf mf mf mf m f
since it is a clockwise rotation.)
mf mf mf mf mf sure since it is a clockwise rotation.)
mf mf mf mf mf mf
x 5 x 7
m f m f m f mf mfm f m f m f
5. Solve for x:
m f mf mf m f mf 6. Solve for x:
m f mf mf m f mf
6 360∘ 12 360∘
1800∘ 5(360∘ ) 6x, so that x 300∘ .
mf mf mf mf mf m f mf m f mf mf mf 2520∘ 7(360∘ ) 12x, so that x 210∘ .
mf mf mf mf m
f mf mf m f mf mf mf
x 4 x 5
7. Solve for x: 8. Solve for x:
m
f m f m f m f m f m f m f
m f mf mf m f mf mf m f mf mf m f mf mf
5 360∘ 9 360∘
1440∘ 4(360∘ ) 5x, so that
mf mf mf mf mf mf mf 1800∘ 5(360∘ ) 9x, so that
mf mf mf mf mf mf mf
x 288∘ .
mf mf mf x 200∘ .
mf mf mf
(Note: The angle has a negative mea
m f mf mf mf mf mf (Note: The angle has a negative measu
m f mf mf mf mf mf
sure since it is a clockwise rotation.)
mf mf mf mf mf mf re since it is a clockwise rotation.)
mf mf mf mf mf mf
9. 10.
a) complement: 90∘ 18∘ 72∘ m f mf m f m f a) complement: 90∘ 39∘ 51∘ m f mf mf m f m f
b) supplement: 180∘ 18∘ 162∘ m f mf m f m f b) supplement: 180∘ 39∘ 141∘ m f mf mf m f m f
11. 12.
a) complement: 90∘ 42∘ 48∘ m f mf mf m f m f a) complement: 90∘ 57∘ 33∘ m f mf mf m f m f
b) supplement: 180∘ 42∘ 138∘ m f mf mf m f m f b) supplement: 180∘ 57∘ 123∘ m f mf mf m f m f
2
, Section 1.1 mf
13. 14.
a) complement: 90∘ 89∘ 1∘ m f mf mf m f m f a) complement: 90∘ 75∘ 15∘ m f mf mf m f m f
b) supplement: 180∘ 89∘ 91∘ m f mf mf m f m f b) supplement: 180∘ 75∘ 105∘ m f mf mf m f m f
15. Since the angles with measures 4x∘ and
m f mf mf mf mf mf m f m f 6x∘ are assumed to be compleme mf mf mf mf mf
ntary, we know that 4x∘ 6x∘ 90∘. Simplifying this yields
mf mf mf mf mf mf mf mf m f mf mf
10x∘ 90∘ , mf mf m
f m f so that x 9. So, the two angles have measures 36∘and 54∘ .
mf m f mf mf m f mf mf mf mf mf m f mf mf
16. Since the angles with measures 3x∘ and
m f mf mf mf mf mf m f m f 15x∘ are assumed to be suppleme mf mf mf mf mf
ntary, we know that 3x∘ 15x∘ 180∘. Simplifying this yields
mf mf mf mf mf mf mf m
f m f mf mf
18x∘ 180∘, mf m
f mf so that x 10. So, the two angles have measures 30∘ and 150∘ .
mf m f mf m
f m f mf mf mf mf mf m f mf mf mf
17. Since the angles with measures
m f mf mf mf mf m f 8x∘ and 4x∘ are assumed to be supplement
mf m f mf mf mf mf mf
ary, we know that 8x∘ 4x∘ 180∘. Simplifying this yields
mf mf mf mf mf mf mf m
f m f mf mf
12x∘ 180∘, mf m
f m f so that x 15. So, the two angles have measures 60∘ and 120∘ .
mf m f mf m
f m f mf mf mf mf mf m f mf mf mf
18. Since the angles with measures 3x 15∘ and
m f mf mf mf mf m f mf m
f m f 10x 10∘ are assumed to be co mf m
f mf mf mf mf
mplementary, we know that 3x 15∘ 10x 10∘ 90∘. Simplifying this yields
mf mf mf mf mf mf mf mf mf mf m f mf mf
13x 25∘ 90∘,
mf mf mf mf m f so that 13x∘ 65∘ and thus, x 5. So, the two angles have me
mf mf mf mf m f mf m f mf mf m f mf mf mf mf mf
asures 30∘and 60∘ . m f mf mf
19. Since 180∘, we know t
m f mf mf mf mf mf m f m
f m f mf mf 20. Since 180∘, we know t
m f mf mf mf mf mf m f m
f m f mf mf
hat hat
1 17∘ –33∘ 180∘ and so, 30∘ . 1 10∘ –45∘ 180∘ and so, 25∘ .
– –
mf mf mf mf m
f mf mf m f mf mf mf mf mf mf mf m
f mf mf mf mf mf mf
mf mf
mf150∘ mf155∘
21. Since 180∘, we know t
m f mf mf mf mf mf m f m
f m f mf mf 22. Since 180∘, we know t
m f mf mf mf mf mf m f m
f m f mf mf
hat hat
4 180∘ and so, 30∘.
mf m
f mf mf mf mf mf m
f mf mf mf mf mf 3 180∘ and so, 36∘.
mf m
f mf mf mf mf mf m
f mf mf mf mf mf
–– –– –– ––
mf6m
f mf5
Thus, 4 120∘ and 30∘ . Thus, 3 108∘ and 36∘ .
m f mf mf m f m
f m f mf m f mf m f mf mf m f m f mf m f mf m f mf m f mf m f mf mf
3
,
, CHAPTER 1 mf
Section 1.1 Solutions --------------------------------------------------------------------------------
mf mf mf
1 x 1 x
m f m f m f m
f m f m f m f
1. Solve for x:
m f mf mf m f mf 2. Solve for x:
m f mf mf m f mf
2 360∘ 4 360∘
360∘ 2x, so that x 180∘ .
mf mf m f mf m f mf mf mf 360∘ 4x, so that x 90∘ .
mf mf m f mf m f mf mf mf
1
x 2 x
3. Solve for x: 4. Solve for x:
m f m f m f m f m f m f
m f mf mf m f mf mf m f mf mf m f m f mf
3 360∘ 3 360∘
360∘ 3x, so that x 120∘ . (Not
mf mf mf mf m f mf mf mf mf 720∘ 2(360∘ ) 3x, so that x 240∘
mf mf mf mf mf mf mf m f mf mf mf
e: The angle has a negative measure
mf mf mf mf mf mf mf . (Note: The angle has a negative mea
mf m f mf mf mf mf m f
since it is a clockwise rotation.)
mf mf mf mf mf sure since it is a clockwise rotation.)
mf mf mf mf mf mf
x 5 x 7
m f m f m f mf mfm f m f m f
5. Solve for x:
m f mf mf m f mf 6. Solve for x:
m f mf mf m f mf
6 360∘ 12 360∘
1800∘ 5(360∘ ) 6x, so that x 300∘ .
mf mf mf mf mf m f mf m f mf mf mf 2520∘ 7(360∘ ) 12x, so that x 210∘ .
mf mf mf mf m
f mf mf m f mf mf mf
x 4 x 5
7. Solve for x: 8. Solve for x:
m
f m f m f m f m f m f m f
m f mf mf m f mf mf m f mf mf m f mf mf
5 360∘ 9 360∘
1440∘ 4(360∘ ) 5x, so that
mf mf mf mf mf mf mf 1800∘ 5(360∘ ) 9x, so that
mf mf mf mf mf mf mf
x 288∘ .
mf mf mf x 200∘ .
mf mf mf
(Note: The angle has a negative mea
m f mf mf mf mf mf (Note: The angle has a negative measu
m f mf mf mf mf mf
sure since it is a clockwise rotation.)
mf mf mf mf mf mf re since it is a clockwise rotation.)
mf mf mf mf mf mf
9. 10.
a) complement: 90∘ 18∘ 72∘ m f mf m f m f a) complement: 90∘ 39∘ 51∘ m f mf mf m f m f
b) supplement: 180∘ 18∘ 162∘ m f mf m f m f b) supplement: 180∘ 39∘ 141∘ m f mf mf m f m f
11. 12.
a) complement: 90∘ 42∘ 48∘ m f mf mf m f m f a) complement: 90∘ 57∘ 33∘ m f mf mf m f m f
b) supplement: 180∘ 42∘ 138∘ m f mf mf m f m f b) supplement: 180∘ 57∘ 123∘ m f mf mf m f m f
2
, Section 1.1 mf
13. 14.
a) complement: 90∘ 89∘ 1∘ m f mf mf m f m f a) complement: 90∘ 75∘ 15∘ m f mf mf m f m f
b) supplement: 180∘ 89∘ 91∘ m f mf mf m f m f b) supplement: 180∘ 75∘ 105∘ m f mf mf m f m f
15. Since the angles with measures 4x∘ and
m f mf mf mf mf mf m f m f 6x∘ are assumed to be compleme mf mf mf mf mf
ntary, we know that 4x∘ 6x∘ 90∘. Simplifying this yields
mf mf mf mf mf mf mf mf m f mf mf
10x∘ 90∘ , mf mf m
f m f so that x 9. So, the two angles have measures 36∘and 54∘ .
mf m f mf mf m f mf mf mf mf mf m f mf mf
16. Since the angles with measures 3x∘ and
m f mf mf mf mf mf m f m f 15x∘ are assumed to be suppleme mf mf mf mf mf
ntary, we know that 3x∘ 15x∘ 180∘. Simplifying this yields
mf mf mf mf mf mf mf m
f m f mf mf
18x∘ 180∘, mf m
f mf so that x 10. So, the two angles have measures 30∘ and 150∘ .
mf m f mf m
f m f mf mf mf mf mf m f mf mf mf
17. Since the angles with measures
m f mf mf mf mf m f 8x∘ and 4x∘ are assumed to be supplement
mf m f mf mf mf mf mf
ary, we know that 8x∘ 4x∘ 180∘. Simplifying this yields
mf mf mf mf mf mf mf m
f m f mf mf
12x∘ 180∘, mf m
f m f so that x 15. So, the two angles have measures 60∘ and 120∘ .
mf m f mf m
f m f mf mf mf mf mf m f mf mf mf
18. Since the angles with measures 3x 15∘ and
m f mf mf mf mf m f mf m
f m f 10x 10∘ are assumed to be co mf m
f mf mf mf mf
mplementary, we know that 3x 15∘ 10x 10∘ 90∘. Simplifying this yields
mf mf mf mf mf mf mf mf mf mf m f mf mf
13x 25∘ 90∘,
mf mf mf mf m f so that 13x∘ 65∘ and thus, x 5. So, the two angles have me
mf mf mf mf m f mf m f mf mf m f mf mf mf mf mf
asures 30∘and 60∘ . m f mf mf
19. Since 180∘, we know t
m f mf mf mf mf mf m f m
f m f mf mf 20. Since 180∘, we know t
m f mf mf mf mf mf m f m
f m f mf mf
hat hat
1 17∘ –33∘ 180∘ and so, 30∘ . 1 10∘ –45∘ 180∘ and so, 25∘ .
– –
mf mf mf mf m
f mf mf m f mf mf mf mf mf mf mf m
f mf mf mf mf mf mf
mf mf
mf150∘ mf155∘
21. Since 180∘, we know t
m f mf mf mf mf mf m f m
f m f mf mf 22. Since 180∘, we know t
m f mf mf mf mf mf m f m
f m f mf mf
hat hat
4 180∘ and so, 30∘.
mf m
f mf mf mf mf mf m
f mf mf mf mf mf 3 180∘ and so, 36∘.
mf m
f mf mf mf mf mf m
f mf mf mf mf mf
–– –– –– ––
mf6m
f mf5
Thus, 4 120∘ and 30∘ . Thus, 3 108∘ and 36∘ .
m f mf mf m f m
f m f mf m f mf m f mf mf m f m f mf m f mf m f mf m f mf m f mf mf
3
,