100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

Precalculus: Practice Problems, Methods, and Solutions – 2nd Edition (Rahmani-Andebili, 2024)

Rating
-
Sold
-
Pages
162
Grade
A+
Uploaded on
14-07-2025
Written in
2024/2025

INSTANT DOWNLOAD PDF — This comprehensive Precalculus: Practice Problems, Methods, and Solutions* (2nd Edition, 2024) by Mehdi Rahmani-Andebili offers step-by-step solutions to a wide range of algebra, trigonometry, functions, and graphing problems. Designed for high school and college students, this resource is ideal for building a strong foundation in precalculus through clear methods and fully worked-out solutions. precalculus solutions manual, rahmani-andebili 2nd edition answers, algebra and trigonometry problems, precalculus practice problems, graphing functions step-by-step, trig identities exercises, math prep book solutions, high school math guide, college precalculus help, precalculus methods and solutions #Precalculus, #MathSolutions, #RahmaniAndebili, #TrigonometryHelp, #AlgebraPractice, #MathTextbook, #STEMEducation, #PrecalculusGuide, #MathStudents, #CollegeMath

Show more Read less
Institution
Calculus
Course
Calculus

Content preview

,Contents




1 Problems: Real Number Systems, Exponents and Radicals,
and Absolute Values and Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Real Number Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Exponents and Radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Absolute Values and Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Solutions to Problems: Real Number Systems, Exponents
and Radicals, and Absolute Values and Inequalities . . . . . . . . . . . . . . . . . . . . 17
2.1 Real Number Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Exponents and Radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Absolute Values and Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3 Problems: Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4 Solutions to Problems: Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . . 41
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5 Problems: Quadratic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6 Solutions to Problems: Quadratic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7 Problems: Functions, Algebra of Functions, and Inverse Functions . . . . . . . . 71
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8 Solutions to Problems: Functions, Algebra of Functions,
and Inverse Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9 Problems: Factorization of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10 Solutions to Problems: Factorization of Polynomials . . . . . . . . . . . . . . . . . . . . 115
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
11 Problems: Trigonometric and Inverse Trigonometric Functions . . . . . . . . . . . 121
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130




ix

,x Contents

12 Solutions to Problems: Trigonometric and Inverse Trigonometric
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
13 Problems: Arithmetic and Geometric Sequences . . . . . . . . . . . . . . . . . . . . . . . 145
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
14 Solutions to Problems: Arithmetic and Geometric Sequences . . . . . . . . . . . . . 157
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

, Problems: Real Number Systems, Exponents
and Radicals, and Absolute Values 1
and Inequalities




Abstract
In this chapter, the basic and advanced problems of real number systems, exponents, radicals, absolute values, and inequalities
are presented. To help students study the chapter in the most efficient way, the problems are categorized into different levels
based on their difficulty (easy, normal, and hard) and calculation amounts (small, normal, and large). Moreover, the problems
are ordered from the easiest, with the smallest computations, to the most difficult, with the largest calculations.


1.1 Real Number Systems

1.1. Which one of the numbers below exists [1]?
Difficulty level ● Easy ○ Normal ○ Hard
Calculation amount ● Small ○ Normal ○ Large
1) The minimum integer number smaller than -1.
2) The minimum irrational number larger than -1.
3) The maximum integer number smaller than -1.
4) The maximum rational number smaller than -1.

1.2. As we know, ℝ is the set of real numbers, ℤ is the set of integer numbers, and ℕ is the set of natural numbers. Which one
of the choices is correct?
Difficulty level ● Easy ○ Normal ○ Hard
Calculation amount ● Small ○ Normal ○ Large
1) ℕ ⊂ ℤ ⊂ ℝ
2) ℝ ⊂ ℤ ⊂ ℕ
3) ℝ ⊂ ℕ ⊂ ℤ
4) ℤ ⊂ ℝ ⊂ ℕ


Exercise: Which one of the rational numbers below can be considered an integer number?
1
1)
2
2
2) -
1
3
3) -
4
4
4) -
3

Final answer: Choice (2).



# The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 1
M. Rahmani-Andebili, Precalculus, https://doi.org/10.1007/978-3-031-49364-5_1

Written for

Institution
Calculus
Course
Calculus

Document information

Uploaded on
July 14, 2025
Number of pages
162
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
TestBanksStuvia Chamberlain College Of Nursng
View profile
Follow You need to be logged in order to follow users or courses
Sold
2793
Member since
2 year
Number of followers
1201
Documents
1918
Last sold
1 hour ago
TESTBANKS & SOLUTION MANUALS

if in any need of a Test bank and Solution Manual, fell free to Message me or Email donc8246@ gmail . All the best in your Studies

3.9

298 reviews

5
164
4
44
3
31
2
20
1
39

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions