Finite Mathematics & Its Application
13th Edition by Goldstein Chapters 1 - 1
, Contents
Chapter 1: Linear Equations and Straight Lines
ps ps ps ps ps 1–1
Chapter 2: Matrices
ps 2–1
Chapter 3: Linear Programming, A Geometric Approach
ps ps ps ps ps 3–1
Chapter 4:
ps The Simplex Method
ps ps 4–1
Chapter 5: Sets and Counting
ps ps ps 5–1
Chapter 6: Probability
ps 6–1
Chapter 7: Probability and Statistics
ps ps ps 7–1
Chapter 8: Markov Processes
ps ps 8–1
Chapter 9:
ps The Theory of Games
ps ps ps 9–1
Chapter 10: The Mathematics of Finance
ps ps ps ps 10–1
Chapter 11: Logic
ps 11–1
Chapter 12: Difference Equations and Mathematical Models
ps ps ps ps ps 12–1
, Chapter 1
ps
Exercises 1.1
ps 5
6. Left 1, down
p s ps ps p s
2
1. Right 2, up 3 ps ps ps
y
y
(2, 3)
ps
x
x
(–1, – 25 )
ps ps
ps
7. p s Left 20, up 40
ps ps ps
2. Left 1, up 4
ps ps ps
y
y
(–20, 40)
ps
(–1, 4) ps
x
x
8. p s Right 25, up 30
ps ps ps
3. Down 2
p s ps
y
y
(25, 30) ps
x
x
(0, –2) ps
9. Point Q is 2 units to the left and 2 units up or
ps ps ps ps ps ps ps ps ps ps ps ps
4. Right 2 ps
y (—2,2). ps
10. Point P is 3 units to the right and 2 units down or
ps ps ps ps ps ps ps ps ps ps ps ps
(3,—2).
x
(2, 0)
ps 1 ps
11. —2(1) + (3) = —2 +1 = —1so yes the point is
ps ps ps ps ps ps ps ps ps ps ps
3
on the line. ps ps
5. Left 2, up 1 1 ps
12. —2(2) + (6) = —1 is false, so no the point is not
ps ps ps
y ps ps ps ps ps ps ps ps ps ps ps ps
3
on the line ps ps
(–2, 1)
x
ps
Copyright © 2023 Pearson Education, Inc.
ps ps ps ps ps 1-1
, Chapter 1: Linear Equations and Straight Lines
ps ps ps ps ps ps ISM: Finite Math
ps ps
1 ps
24. 0 = 5
p s ps ps
13. —2x + y = —1 Substitute the x and y ps ps ps ps p s ps ps ps ps
no solution ps
3 x-
coordinates of the point into the equation: ps ps ps ps ps ps
intercept: none Wh
f 1 hı f h
ps ps
' ,3 →—2 ' 1 ı +1(3)=—1→—1+1=—1 is
ps
ps ps
en x = 0, y = 5y-
ps ps ps ps ps ps ps
y' ı
ps ps ps ps ps ps ps ps ps ps
intercept: (0, 5) ps ps
2 J' ı y2J 3 pspsp s
ps
ps
a false statement. So no the point is not on theline.
ps ps ps ps ps ps ps ps ps ps ps 25. When y = 0, x = 7x-
ps ps ps ps ps ps ps ps
f 1h f1h intercept: (7, 0)0 ps ps ps ps
—2 ' ı + ' ı(—1) =—1 is true so yes the point is ps ps ps ps ps ps ps ps ps =7 ps
14. no solution ps
'y3 ıJ 'y3 Jı pspsps
y-intercept: none ps
on the line. ps ps
26. 0 = –8x
p s ps ps
15. m = 5, b = 8
p s ps ps ps ps ps
x=0 ps ps
x-intercept: (0, 0) ps ps
16. m = –2 and b = –6
p s ps ps ps ps ps ps
y = –8(0)
ps ps
y=0 ps ps
17. p s y = 0x + 3; m = 0, b = 3
ps ps ps ps ps ps ps ps ps ps y-intercept: (0, 0) ps ps
2 2 1 ps
18. y = x+0; m = , b = 0
ps ps
ps
ps ps ps ps ps
ps
ps ps ps
27. 0 = x –1 ps ps ps ps
3 3 3
x=3 ps ps
19. 14x+7y = 21
p s ps ps ps ps ps
x-intercept: (3, 0) ps ps
1 ps
7 y =—14x +21
ps ps ps ps ps
y = (0) – 1
ps ps ps ps
3
y = —2x +3
ps ps ps ps
y = –1ps ps
y-intercept: (0, –1)
20. x— y = 3
ps ps
ps ps ps ps y
—y =—x +3 ps ps ps ps
y = x —3
ps ps ps ps
(3, 0) ps
21. 3x =5
pspsp s ps ps
x
5 (0, –1) ps
x= ps ps
3
1 2 28. When x = 0, y = 0. ps ps ps ps ps ps
22. – x + y = 10 ps ps ps
2 3 When x = 1, y = 2. ps ps ps ps ps ps
2 1 ps ps y
y = x +10 ps ps ps
3 2
3 ps
y = x +15 ps ps ps
(1, 2) ps
4 x
(0, 0) ps
23. 0 = —4x +8ps ps ps ps
4x = 8 ps ps
x =2 ps ps
x-intercept: (2, 0) ps ps
y = –4(0) + 8
ps ps ps ps
y=8
ps ps
y-intercept: (0, 8) ps ps
1-2 Copyright © 2023 Pearson Education, Inc. ps ps ps ps ps