100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Summary

Samenvatting Logica- en argumentatieleer F. Buekens (2022-23)

Rating
2.8
(4)
Sold
11
Pages
52
Uploaded on
25-12-2022
Written in
2022/2023

Volledige samenvatting van vak Logica- en argumentatieleer, gegeven door F. Buekens. Het is een samenvatting van het boek 'Redeneren en argumenteren: een inleiding voor juristen', aangevuld met slides en lesnotities.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
December 25, 2022
Number of pages
52
Written in
2022/2023
Type
Summary

Subjects

Content preview

Logica en argumentatieleer

DEEL I: Logica, redeneren en argumenteren

1.Redeneren en argumenteren met conditionele uitspraken
1.1 Redeneren en argumenteren
Redeneren = aaneenschakeling van beweringen waarbij een conclusie wordt afgeleid
- Deductieve redenering
- Inductieve redenering
- Abductieve redenering
Argumenteren = uitwisselen van argumenten met het oog op accepteren ve stelling

1.2 Hoe goed begrijp je conditionele uitspraken
- Leggen relaties tussen zinnen (niet: beweringen!)
- Een van die zinnen legt een voorwaarde vast voor een andere zin.
- Soms kunnen we ook conditionele relaties tussen eigenschappen leggen.

Voorwaardenindicators: zijn nevenschikkende constructies
- Als… dan …
- Alleen als … dan …
- …impliceert ….
- …. tenzij…
- …. behalve wanneer…
- … juist dan wanneer …

Conditionele uitspraak is één bewering bestaande uit twee proposities:
- Antecedens = voldoende voorwaarde
- Consequens = noodzakelijke voorwaarde
 deze zijn verbonden door een implicatie = conditionele functor

! De verbonden proposities in een conditionele uitspraak zijn waar of onwaar, maar worden
zelf niet beweerd
Bv: ‘Als Joe Biden in Brussel woont, dan woont hij ook in België.’  Een ware bewering, met
onware antecedens en onware consequens.

Andere voorbeelden:
We draaien de bierkaart en kaart met 16j om 
je moet twee groepen controleren: diegene
jonger dan 18 en diegene die alcohol drinken



1.3 Voldoende en noodzakelijke voorwaarden
Als – gedeelte is antecedens (=voorafgaande)
Dan…-gedeelte is consequens (het erop volgende)

1) P is voldoende voor q
2) Q is noodzakelijk om (voor) p
 p = antecedens en q = consequens


1

,1.4 Een eerste aanzet tot formalisering
‘Als p dan q' = p ⊃ q
- In deze formalisering zie je de antecedens (p) en consequens (q).
- Alternatieve formalisering: ¬q ⊃ ¬p. Maar ook: ¬ (p & ¬q)
- De converse bewering van ‘als p dan q’ luidt: ‘als q dan p’. Een implicatie en haar
converse betekenen duidelijk iets anders!
- De contrapositie van ‘als p dan q’ luidt: als niet-q dan niet-p’. Die uitspraken
betekenen hetzelfde.  p  q = ¬q ⊃ ¬p
- De negatie of ontkenning van ‘als p dan q’ luidt: ‘p en niet-q’ (lees: ‘p, en toch kan
niet-q het geval zijn)

 Negatie: niet p = ¬p
 Conjunctie: p en q = p  q
 als p en q waar zijn dan is de conjunctie ook waar
 Disjunctie: p of q = p  q
 als p en q beide onwaar zijn dan is disjunctie ook onwaar

- Exclusieve disjunctie: deelproposities p en q kunnen niet tegelijkertijd waar zijn
 bv: als de kat op zolder zit, kan ze niet in de tuin zitten (¬T ⊃ Z) en andersom
(¬Z ⊃ T)

- Inclusieve disjunctie: deelproposities kunnen tegelijkertijd waar zijn
 Bv: als een man een jas draagt dan kan hij al da niet een das dragen, maar als hij
geen jas draagt dan moet hij een das dragen (beide kunnen tegelijkertijd)

 Equivalentie: (beide voorwaarden zijn voldoende als noodzakelijk voor elkaar)
- P als en slechts als q = p  q
- P dan en slechts dan als q = p  q
 equivalenties zijn vaak terug te vinden in definities
o Bv: meerderjarigheid is vastgesteld op volle leeftijd van 18j  je bent
meerderjarig als en slechts als je de volle leeftijd van 18j bereikt hebt
o Bv: je krijgt 10 euro als je het gras maait  gras maaien is voldoende en
noodzakelijk voorwaarde om geld te krijgen: je krijgt 10 euro als en slechts als je
het gras maait

Logische equivalente formaliseringen van implicaties
- p ⊃ q is logisch equivalent met: ¬(p & ¬q): beide formules drukken dezelfde inhoud
uit
o ‘Het is onwaar dat iemand in Oostende kan wonen en toch niet in België woont’ (=
‘als iemand in Oostende woont, woont ze ook in België’)

- p ⊃ q is logisch equivalent met: ¬p ⌵ q: idem
- … en de logische equivalentie-relatie is transitief, dus geldt ook:
- ¬(p & ¬q) is logisch equivalent met ¬p ⌵ q
- We schrijven: ( p ⊃ q)  ¬(p & ¬q) (lees als ‘als en slechts als’ of ‘juist dan
wanneer’)

Voorbeelden:
 Als je achttien bent, dan moet je, als je over je burgerrechten beschikt, gaan stemmen
 A  ( B  s)
 Als je achttien bent én over je burgerrechten beschikt, moet je gaan stemmen

2

,  ( A en B)  s
 Als je over je burgerrechten beschikt, dan moet je, als je achttien bent, gaan stemmen
 B  ( A  s)

1.5 Conditionele relaties uitgedrukt in natuurlijke taal: kwesties v interpretatie
Wanneer is een conditionele uitspraak waar?
 Wat als antecedens en consequens beide onwaar zijn? Dan is de conditionele uitspraak
waar!
 Wat als de antecedens waar is en de consequens onwaar is? Dan is de uitspraak
onwaar! In alle andere gevallen is de uitspraak waar.


Problemen met ‘tenzij’
 ‘p tenzij q’ betekent logisch: ‘p of q’ = p ⌵ q
 Voorbeeld: ‘de hond zit in de keuken, tenzij hij in de tuin loopt’ (hij zit in de keuken of
in de tuin)

 Tenzij kan ook gebruikt worden als uitzonderingsvoorwaarde:
 p tenzij q = ¬q ⊃ p = niet q is een voldoende voorwaarde voor p
o bv: als je niet gezakt bent, dan gaan we op vakantie
o bv: als een volwassene niet uit zijn burgerrechten is ontzet, dan heeft hij
stemrecht

 door contrapositie kan dit ook weergegeven worden als ¬p ⊃ q = q is een voldoende
voorwaarde voor niet-p
o bv: als we niet op vakantie gaan, dan ben je gezakt
o bv: als een volwassene geen stemrecht heeft, dan is hij ontzet uit zijn
burgerrechten


DUS p tenzij q heeft twee interpretaties:

(i) ¬q ⊃ p (wat equivalent is aan ¬p ⊃ q, en dus ook aan p ⌵ q)
(ii) q ⊃ ¬p (wat equivalent is aan p ⊃ ¬q)




1.6 Redeneren met conditionele uitspraken
Modus ponens Modus tollens Hypothetisch syllogisme
p ⊃q
p⊃q p⊃q
p
Dus: q ¬q q⊃r
Dus: ¬p Dus: p ⊃ r


Ongeldige redenering: Ongeldige redenering:
p⊃q
p⊃q
¬p
Dus: ¬q q
Dus: p
 bv: als Eddy Merckx een Belg is, dan is hij ook een Europeaan
Eddy merckx is een europeaan  dus: EM is een belg


3

, Varianten op geldige redenering door subsitutie (vervanging)
 Voorbeeld 1: vervang in modus ponens alle voorkomens van ‘p’ door ‘niet-p’
 Voorbeeld 2: vervang in modus tollens alle voorkomens van ‘niet-p’ door ‘p’
o De nieuwe redeneervormen blijven geldig !
o Let op de dubbele negatie: die heffen elkaar op (‘het is niet zo dat niet-p’ = p)
o Opgelet: deze vervangregel gaat niet op voor ongeldige redeneringen

P vervangen door r & s = p / r & s
r∧s
r&s⊃q
q

Voorbeelden stellingen: geldig of ongeldig
 Stelling 1:
“Als de temperatuur niet boven de 40 graden stijgt, zal de bom niet exploderen. De
temperatuur is 56° celsius. Dus zal de bom exploderen.”
 ongeldig

T > 40° ⊃ ¬E (temperatuur hoger dan 40 impliceert dat de bom niet explodeert)
p ⊃¬ q
¬T < 40
 ¬p =q
E
¬¬ q
p ⊃q
 dit is een ongeleldige redenering want normale redenering is dit: ¬ p
¬q

 Stelling 2:
“Als Sadam Hoesein massavernietigingswapens had, dan had de VS het recht Irak binnen te
vallen. Maar hij had ze niet. Dus hadden ze ook dat recht niet.”
 ongeldig


2. Redeneren en argumenteren
DEEL 1: BIAS EN HEURISTIEK
1.1 narrative machines en systeem 1
Ons brein is een verbandleggende machine = narrative machine
 MAAR niet alle verbanden die we leggen zijn even redelijk

 Systeem 1 opereert automatisch, snel associatief zonder veel inspanning en
zonder dat het daar controle over voert. Het ‘springt’ naar conclusies op basis
van wat beschikbaar is. Het zoekt spontaan naar coherentie of samenhang.
 Bv: wie deze lijnstukken ziet denkt meteen dat ze ongelijk zijn
 bv: Piet ging skiën. Hij brak een been
Piet ging skiën. Hij viel van de trap
Bij eerste stelling leg automatisch het verband, maar bij de tweede niet

 Systeem 1 is een verhaalvertellend stysteem: Om informatie te onthouden zoeken we
spontaan naar samenhang. We onthouden narratieve structuren en niet afzonderlijke
woorden en zinnen.

4
$14.66
Get access to the full document:
Purchased by 11 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Reviews from verified buyers

Showing all 4 reviews
2 year ago

literally just retyped the lectures into a word document.

2 year ago

1 year ago

3 year ago

only ppt, not all subject matter is here

3 year ago

I created this summary along with the book, ppt, and lesson notes. With this summary, I passed this course.

2.8

4 reviews

5
0
4
1
3
2
2
0
1
1
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Marie1103 Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
150
Member since
3 year
Number of followers
99
Documents
14
Last sold
2 months ago

3.7

15 reviews

5
2
4
8
3
4
2
0
1
1

Trending documents

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions