100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Population and Quantitative Genetics

Rating
-
Sold
4
Pages
61
Uploaded on
17-02-2022
Written in
2020/2021

Summary of lectures and tutorials

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
February 17, 2022
Number of pages
61
Written in
2020/2021
Type
Summary

Subjects

Content preview

Exam: 8 open questions

Ch1: Variability & its measurement
Introduction & variability
Classical studies of variability (pre genomics era)
Types of variability

 Discrete variability => clearly distinct classes
- Discrete polymorphism
- E.g. eye colour, blood group, coat colour mice
- Allowed Mendel to discover genes as particles
- Genes do not blend/mix  they stay intact
 Quantitative variability => continuous variation
- E.g. human height, fitness, crop yield
- Often normal or Gaussian distributed
- Can continuous variation agree with genes as discrete particles?

 Modern evolutionary synthesis (1920s)
- Union of Mendel + Darwin  Fisher, Haldane & Wright
- Normal distribution with many genes & environmental effects
- Complex traits  affected by many genes
- Phenotypes can be continuous even with discrete genes
 Both types have Mendelian basis



Normal distribution

 Phenotypic measurement of continuous variation
- Mean (µ)
- Standard deviation (σ)
- Coefficient of variation (CV) = σ/ µ
- Complex traits: no longer typical Mendel ratio (not 1:3)



Other types of traits:

 Cryptic discrete polymorphisms => variability that cannot be seen from outside (discrete)
- E.g. blood group, chromosomal rearrangements, neutral markers (SNP)
- Conditionally expressed variation: e.g. diabetes type II polymorphisms only affect
phenotype when food is abundant
- Effect of mutations can be hidden by other genes
- Expression can depend on: background genotype (1) or on environment (2)
 Categorical or meristic traits => trait values with limited number of categories (quant)
- E.g. litter size, number of seeds
- Countable traits (so not body weight: can be measured, but not counted)
 Threshold traits => special type of categorical traits (quant)
- E.g. many complex diseases
- Phenotype discrete (0/1), genotype continuous (genetic liability)

, - Many genotypes  2 phenotypes



Genetic limits of classical studies

 Does not look at genes, can not answer key questions of population genetics:
 How much variation in average gene?
 What causes & maintains this variation?
 What is genetic architecture of complex traits?



Molecular studies of variability (looks at genes: genomics era)
 With DNA chips or DNA sequencers


Measuring variability at gene level:

 Genotype frequency (fxx)
Allele frequency (p)
 Proportion of polymorphic loci (P)
- #loci with more than 1 allele/total #loci
- Has cut-off on e.g. p=0.99
- Not very useful, relatively arbitrary
 Number of distinct alleles (A)
- Depends on sample size (larger sample  more alleles)
- Ignores allele frequency
 Gene diversity (H) => probability that 2 randomly chosen alleles differ
- Expected heterozygosity
- Preferred measure
- Nog veranderen!!  formule


Measuring DNA sequence variability at nucleotide level: (very important for this course)

 Nucleotide diversity (π) => probability that 2 randomly chosen nucleotides at random site
are different
- Averages over all nucleotides (sites) in sample
- Analogous to H, but then for nucleotides instead of loci
- Sample size = k
 Watterson’s theta (ϴW)
- Sk = #polymorphic sites
- ak = correction for sample size = 1 + ½ until 1/(k-1)
- Large samples: ak = ln(k) + 0.577
- On average ϴW = π (with constant k)



Genetic variation is abundant

,Lessons from sequence information: SNPs

 SNP has + relationship with population size
- Due to drift (coalescent theory)
 SNP => single nucleotide polymorphism
- Very common  genetic variation abundant
 Many SNPs are silent
- Silent = no change in amino acid
- Non-coding or synonymous  suggests mutations are mostly deleterious
- Non-silent SNPs have apparently been removed by natural selection
 InDels are common in non-coding regions
- Deleterious in coding regions



Hardy Weinberg
Haplotypes

 Each diploid individual carries 2 haplotypes
- 1 from mother, 1 from father
 #haplotypes not good diversity measure, because it depends on:
- Length of haplotypes
- Sample size
- Recombination generates new haplotypes



1 gene  1 phenotype

 Simple Mendelian traits are exception, not rule
 Complex relationship, not 1:1
- 1 trait influenced by many genes
- Pleiotropy => simple gene affects >1 trait
- Epistasis => interactions between genes
- Environmental influences



Cause & maintenance of variability
Hardy Weinberg equilibrium (HWE)

 Only when no forces act on population
- No selection
- No mutation
- No migration
- No random events (large population  no drift)
- Random mating
 HW law
- Allele & genotype frequencies remain constant
- Variability maintained forever
- Serves as null hypothesis

, HW law: maintaining variation

 1 locus, 2 alleles (A & B)
- A=p
- B=q 
- p+q=1

 cannot be used for HWE
 Can only use p= √ p if you know HW is true, otherwise use p = f AA + ½ * fAB
2

 Random mating
- Next generation: p’ & q’




Testing for deviations from HWE

 36 AA (p2) p = 0.5 25 AA
28 AB  q = 0.5  expected: 50 AB
36 BB 25 BB
 Test for significance:
- Goodness of fit test
- Chi square distribution with df=1 (always)
- O & e are #individuals (not freq)
- P > 0.05  HWE, p<0.05  no HWE (different p, not
allele freq)
 Use of HW law
- Testing whether gene is under selection
- Testing whether mating is non-random
- Calculate fraction of carriers of disease in population
- Calculate probability that individual will suffer from disease
- Calculate change of allele frequency due to selection
- Validity of quantitative genetics



HWE & recessive diseases: cystic fibrosis

 Recessive diseases => only homozygous individuals affected
- q2 = affected
- 2pq = carrier
 Recessive diseases linked to inbreeding & lack of migration
- More homozygous  more affected by recessive disease



Non random mating & other deviations from HWE

 Assortative mating

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
michouweimar Wageningen University
Follow You need to be logged in order to follow users or courses
Sold
48
Member since
5 year
Number of followers
33
Documents
34
Last sold
1 month ago

3.0

5 reviews

5
0
4
1
3
3
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions