Formulae
Distribution Probability function Mean Variance MGF
Bernoulli (; ) = (1 − )1− (1 − ) + (1 − )
= 0 1 ¡ ¢
Binomial (; ) = (1 − )− (1 − ) [ + (1 − )]
= 0 1
( )( − )
¡ − ¢ ¡ ¢
Hypergeometric (; ) = − 1−
does not exist
() −1
= 0 1 ( ) in closed form
¡ ¢ (1−) (1−)
Negative binomial (; ) = +−1−1
(1 − ) 2 [1− (1−)]
= 0 1 2
1− 1−
Geometric (; ) = (1 − ) 2 1− (1−)
= 0 1 2
−
Poisson (; ) = !
exp [ ( − 1)]
= 0 1 2 h i
2
−2
Standard normal () = √12 exp 2
0 1 2
-∞ ∞ h i
−(−)2 2 2
Non-standard normal(; ) = √1
exp 2 + 2
2 22
-∞ ∞
1 + (−)2 −
Continuous uniform (; ) = − 2 12 (−)
≤≤
−1 −
Standard gamma (; ) = Γ() (1 − )−
0
−1 −
Non-standard gamma (; ) = Γ() 2 (1 − )−
0
Exponential (; ) = − 1 12 (1 − )
≥0
2−1 −2
Chi-squared (; ) = 22 Γ(2) 2 (1 − 2)−2
≥0
Target parameter, Point estimator, b
(b
) Standard error,
√
p
b = q 2
1 2
1 − 2 1 − 2 1 − 2 + 22
q 1
1 1
1 − 2 b1 − b2 1 − 2 1
+ 2 22
− b
=
± 2
1
Distribution Probability function Mean Variance MGF
Bernoulli (; ) = (1 − )1− (1 − ) + (1 − )
= 0 1 ¡ ¢
Binomial (; ) = (1 − )− (1 − ) [ + (1 − )]
= 0 1
( )( − )
¡ − ¢ ¡ ¢
Hypergeometric (; ) = − 1−
does not exist
() −1
= 0 1 ( ) in closed form
¡ ¢ (1−) (1−)
Negative binomial (; ) = +−1−1
(1 − ) 2 [1− (1−)]
= 0 1 2
1− 1−
Geometric (; ) = (1 − ) 2 1− (1−)
= 0 1 2
−
Poisson (; ) = !
exp [ ( − 1)]
= 0 1 2 h i
2
−2
Standard normal () = √12 exp 2
0 1 2
-∞ ∞ h i
−(−)2 2 2
Non-standard normal(; ) = √1
exp 2 + 2
2 22
-∞ ∞
1 + (−)2 −
Continuous uniform (; ) = − 2 12 (−)
≤≤
−1 −
Standard gamma (; ) = Γ() (1 − )−
0
−1 −
Non-standard gamma (; ) = Γ() 2 (1 − )−
0
Exponential (; ) = − 1 12 (1 − )
≥0
2−1 −2
Chi-squared (; ) = 22 Γ(2) 2 (1 − 2)−2
≥0
Target parameter, Point estimator, b
(b
) Standard error,
√
p
b = q 2
1 2
1 − 2 1 − 2 1 − 2 + 22
q 1
1 1
1 − 2 b1 − b2 1 − 2 1
+ 2 22
− b
=
± 2
1