[Type text] [Type text] [Type text]
,TABLE OF CONTENTS
PART I: INTRODUCTION AND REVIEW
Economic Questions And Data
Review Of Probability
Review Of Statistics
PART II: FUNDAMENTALS OF REGRESSION ANALYSIS
Linear Regression With One Regressor
Regression With A Single Regressor: Hypothesis Tests And Confidence
Intervals
Linear Regression With Multiple Regressors
Hypothesis Tests And Confidence Intervals In Multiple Regression
Nonlinear Regression Functions
Assessing Studies Based On Multiple Regression
PART III: FURTHER TOPICS IN REGRESSION ANALYSIS
Regression With Panel Data
Regression With A Binary Dependent Variable
Instrumental Variables Regression
Experiments And Quasi-Experiments
Prediction With Many Regressors And Big Data
PART IV: REGRESSION ANALYSIS OF ECONOMIC TIME SERIES DATA
Introduction To Time Series Regression And Forecasting
Estimation Of Dynamic Causal Effects
Additional Topics In Time Series Regression
PART V: THE ECONOMIC THEORY OF REGRESSION ANALYSIS
The Theory Of Linear Regression With One Regressor
The Theory Of Multiple Regression
©2011 Pearson Education, Inc. Publishing as Addison Wesley
,[Type text] [Type text] [Type text]
Chapter 2
REVIEW OF PROBABILITY
2.1. (A) Probability Distribution Function For Y
Outcome (Number Of Heads) Y0 Y1 Y2
Probability 0.25 0.50 0.25
(B) Cumulative Probability Distribution Function For Y
Outcome (Number Of Y0 0Y1 1Y2 Y2
Heads)
Probability 0 0.25 0.75 1.0
(C) = E(Y ) (0 0.25) (1 0.50) (2 0.25) 1.00 . F Fq, .
DY
Using Key Concept 2.3: Var(Y ) E(Y 2 ) [E(Y )]2 ,
And
(Ui |Xi
)
So That
Var(Y ) E(Y 2 ) [E(Y )]2 1.50 (1.00)2
0.50.
2.2. We Know From Table 2.2 That Pr (Y 0) Pr (Y 1) Pr ( X 0) 030,
022, 078,
Pr( X 1) 070. So
(A) Y E(Y ) 0 Pr (Y 0) 1 Pr (Y 1)
0 022 1 078 078,
X E( X ) 0 Pr ( X 0) 1 Pr ( X 1)
0 030 1 070 070
(B) E[( X ) ]
2 2
X X
2
, (0 0.70)2 Pr ( X 0) (1 0.70)2 Pr ( X 1)
(070)2 030 0302 070 021,
Y2 E[(Y Y )2 ]
(0 0.78)2 Pr (Y 0) (1 0.78)2 Pr (Y 1)
(078)2 022 0222 078 01716
©2011 Pearson Education, Inc. Publishing as Addison Wesley
,TABLE OF CONTENTS
PART I: INTRODUCTION AND REVIEW
Economic Questions And Data
Review Of Probability
Review Of Statistics
PART II: FUNDAMENTALS OF REGRESSION ANALYSIS
Linear Regression With One Regressor
Regression With A Single Regressor: Hypothesis Tests And Confidence
Intervals
Linear Regression With Multiple Regressors
Hypothesis Tests And Confidence Intervals In Multiple Regression
Nonlinear Regression Functions
Assessing Studies Based On Multiple Regression
PART III: FURTHER TOPICS IN REGRESSION ANALYSIS
Regression With Panel Data
Regression With A Binary Dependent Variable
Instrumental Variables Regression
Experiments And Quasi-Experiments
Prediction With Many Regressors And Big Data
PART IV: REGRESSION ANALYSIS OF ECONOMIC TIME SERIES DATA
Introduction To Time Series Regression And Forecasting
Estimation Of Dynamic Causal Effects
Additional Topics In Time Series Regression
PART V: THE ECONOMIC THEORY OF REGRESSION ANALYSIS
The Theory Of Linear Regression With One Regressor
The Theory Of Multiple Regression
©2011 Pearson Education, Inc. Publishing as Addison Wesley
,[Type text] [Type text] [Type text]
Chapter 2
REVIEW OF PROBABILITY
2.1. (A) Probability Distribution Function For Y
Outcome (Number Of Heads) Y0 Y1 Y2
Probability 0.25 0.50 0.25
(B) Cumulative Probability Distribution Function For Y
Outcome (Number Of Y0 0Y1 1Y2 Y2
Heads)
Probability 0 0.25 0.75 1.0
(C) = E(Y ) (0 0.25) (1 0.50) (2 0.25) 1.00 . F Fq, .
DY
Using Key Concept 2.3: Var(Y ) E(Y 2 ) [E(Y )]2 ,
And
(Ui |Xi
)
So That
Var(Y ) E(Y 2 ) [E(Y )]2 1.50 (1.00)2
0.50.
2.2. We Know From Table 2.2 That Pr (Y 0) Pr (Y 1) Pr ( X 0) 030,
022, 078,
Pr( X 1) 070. So
(A) Y E(Y ) 0 Pr (Y 0) 1 Pr (Y 1)
0 022 1 078 078,
X E( X ) 0 Pr ( X 0) 1 Pr ( X 1)
0 030 1 070 070
(B) E[( X ) ]
2 2
X X
2
, (0 0.70)2 Pr ( X 0) (1 0.70)2 Pr ( X 1)
(070)2 030 0302 070 021,
Y2 E[(Y Y )2 ]
(0 0.78)2 Pr (Y 0) (1 0.78)2 Pr (Y 1)
(078)2 022 0222 078 01716
©2011 Pearson Education, Inc. Publishing as Addison Wesley