Strong acid being titrated by a strong base (if (OH)2 then 2Mbase)
equilibrium volume of titrant
𝑀!"#$ 𝑉!"#$ = 𝑀%!&' 𝑉%!&'
0%:
𝑝𝐻 = −log (𝑎𝑛𝑎𝑙𝑦𝑡𝑒 𝑀)
10-90%:
(𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑥 𝑡𝑖𝑡𝑟𝑎𝑛𝑡 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑚𝐿) = 𝑎
(𝑎𝑛𝑎𝑙𝑦𝑡𝑒 𝑀)(𝑎𝑛𝑎𝑙𝑦𝑡𝑒 𝑚𝐿) − (𝑡𝑖𝑡𝑟𝑎𝑛𝑡 𝑀)(𝑎)
=𝑏
𝑎𝑛𝑎𝑙𝑦𝑡𝑒 𝑚𝐿 + 𝑎
𝑝𝐻 = −log (𝑏)
100%:
𝑝𝐻 = 7
110%:
(1.1)(𝑡𝑖𝑡𝑟𝑎𝑛𝑡 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑚𝐿) = 𝑐
𝑐 − (𝑡𝑖𝑡𝑟𝑎𝑛𝑡 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑚𝐿) = 𝑑
𝑑 𝑥 (𝑡𝑖𝑡𝑟𝑎𝑛𝑡 𝑀) = 𝑒
𝑒
=𝑓
(𝑑 + 𝑡𝑖𝑡𝑟𝑎𝑛𝑡 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑚𝐿 + 𝑎𝑛𝑎𝑙𝑦𝑡𝑒 𝑚𝐿)
10()*
=𝑔
𝑓
𝑝𝐻 = −log (𝑔)
equilibrium volume of titrant
𝑀!"#$ 𝑉!"#$ = 𝑀%!&' 𝑉%!&'
0%:
𝑝𝐻 = −log (𝑎𝑛𝑎𝑙𝑦𝑡𝑒 𝑀)
10-90%:
(𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑥 𝑡𝑖𝑡𝑟𝑎𝑛𝑡 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑚𝐿) = 𝑎
(𝑎𝑛𝑎𝑙𝑦𝑡𝑒 𝑀)(𝑎𝑛𝑎𝑙𝑦𝑡𝑒 𝑚𝐿) − (𝑡𝑖𝑡𝑟𝑎𝑛𝑡 𝑀)(𝑎)
=𝑏
𝑎𝑛𝑎𝑙𝑦𝑡𝑒 𝑚𝐿 + 𝑎
𝑝𝐻 = −log (𝑏)
100%:
𝑝𝐻 = 7
110%:
(1.1)(𝑡𝑖𝑡𝑟𝑎𝑛𝑡 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑚𝐿) = 𝑐
𝑐 − (𝑡𝑖𝑡𝑟𝑎𝑛𝑡 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑚𝐿) = 𝑑
𝑑 𝑥 (𝑡𝑖𝑡𝑟𝑎𝑛𝑡 𝑀) = 𝑒
𝑒
=𝑓
(𝑑 + 𝑡𝑖𝑡𝑟𝑎𝑛𝑡 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑚𝐿 + 𝑎𝑛𝑎𝑙𝑦𝑡𝑒 𝑚𝐿)
10()*
=𝑔
𝑓
𝑝𝐻 = −log (𝑔)