100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Chapter9-Econometrics-Autocorrelation.

Beoordeling
-
Verkocht
-
Pagina's
17
Geüpload op
18-01-2022
Geschreven in
2021/2022

Chapter9-Econometrics-Autocorrelation.

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
18 januari 2022
Aantal pagina's
17
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Chapter 9
Autocorrelation
One of the basic assumptions in the linear regression model is that the random error components or
disturbances are identically and independently distributed. So in the model y  X   u, it is assumed that

 u2 if s  0
E (ut , ut  s )  
0 if s  0
i.e., the correlation between the successive disturbances is zero.


In this assumption, when E (ut , ut  s )   u2 , s  0 is violated, i.e., the variance of disturbance term does not

remain constant, then the problem of heteroskedasticity arises. When E (ut , ut  s )  0, s  0 is violated, i.e.,

the variance of disturbance term remains constant though the successive disturbance terms are correlated,
then such problem is termed as the problem of autocorrelation.


When autocorrelation is present, some or all off-diagonal elements in E (uu ') are nonzero.


Sometimes the study and explanatory variables have a natural sequence order over time, i.e., the data is
collected with respect to time. Such data is termed as time-series data. The disturbance terms in time series
data are serially correlated.


The autocovariance at lag s is defined as
 s  E (ut , ut  s ); s  0, 1, 2,... .
At zero lag, we have constant variance, i.e.,
 0  E (ut2 )   2 .
The autocorrelation coefficient at lag s is defined as
E (ut ut  s ) s
s   ; s  0, 1, 2,...
Var (ut )Var (ut  s ) 0

Assume  s and  s are symmetrical in s , i.e., these coefficients are constant over time and depend only on

the length of lag s. The autocorrelation between the successive terms (u2 and u1 )

(u3 and u2 ),..., (un and un 1 ) gives the autocorrelation of order one, i.e., 1 . Similarly, the autocorrelation

between the successive terms (u3 and u1 ), (u4 and u2 )...(un and un  2 ) gives the autocorrelation of order two,

i.e.,  2 .

Econometrics | Chapter 9 | Autocorrelation | Shalabh, IIT Kanpur
1

,Source of autocorrelation
Some of the possible reasons for the introduction of autocorrelation in the data are as follows:
1. Carryover of effect, at least in part, is an important source of autocorrelation. For example, the
monthly data on expenditure on household is influenced by the expenditure of preceding month. The
autocorrelation is present in cross-section data as well as time-series data. In the cross-section data,
the neighbouring units tend to be similar with respect to the characteristic under study. In time-series
data, time is the factor that produces autocorrelation. Whenever some ordering of sampling units is
present, the autocorrelation may arise.


2. Another source of autocorrelation is the effect of deletion of some variables. In regression modeling,
it is not possible to include all the variables in the model. There can be various reasons for this, e.g.,
some variable may be qualitative, sometimes direct observations may not be available on the variable
etc. The joint effect of such deleted variables gives rise to autocorrelation in the data.


3. The misspecification of the form of relationship can also introduce autocorrelation in the data. It is
assumed that the form of relationship between study and explanatory variables is linear. If there are
log or exponential terms present in the model so that the linearity of the model is questionable, then
this also gives rise to autocorrelation in the data.


4. The difference between the observed and true values of the variable is called measurement error or
errors–in-variable. The presence of measurement errors on the dependent variable may also introduce
the autocorrelation in the data.




Econometrics | Chapter 9 | Autocorrelation | Shalabh, IIT Kanpur
2

, Structure of disturbance term:
Consider the situation where the disturbances are autocorrelated,
 0 1   n 1 
 0   n  2 
E ( ')   1
     
 
 n 1  n2   0 
 1 1   n 1 
  1   n  2 
 0  1
     
 
  n 1 n2  1 
 1 1   n 1 
  1   n  2 
2 
 u 1
.
     
 
  n 1 n2  1 

Observe that now there are (n  k ) parameters- 1 ,  2 ,...,  k ,  u2 , 1 ,  2 ,...,  n 1. These (n  k ) parameters are

to be estimated on the basis of available n observations. Since the number of parameters are more than the
number of observations, so the situation is not good from the statistical point of view. In order to handle the
situation, some special form and the structure of the disturbance term is needed to be assumed so that the
number of parameters in the covariance matrix of disturbance term can be reduced.


The following structures are popular in autocorrelation:
1. Autoregressive (AR) process.
2. Moving average (MA) process.
3. Joint autoregression moving average (ARMA) process.


1. Autoregressive (AR) process
The structure of disturbance term in the autoregressive process (AR) is assumed as
ut  1ut 1  2ut  2  ...  q ut  q   t ,

i.e., the current disturbance term depends on the q lagged disturbances and 1 , 2 ,..., k are the parameters

(coefficients) associated with ut 1 , ut  2 ,..., ut  q respectively. An additional disturbance term is introduced in

ut which is assumed to satisfy the following conditions:



Econometrics | Chapter 9 | Autocorrelation | Shalabh, IIT Kanpur
3
€3,93
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
partwi085

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
partwi085 Mahatma Gandhi University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
4 jaar
Aantal volgers
1
Documenten
48
Laatst verkocht
3 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen