1. Let f(x) = -3x,; + 1 lxl + 2x - 7. Find llm f(x) and llm f(x). od4' d#Pf--- Ne/~ l,.C. = ef+u
liM f{x)=- \f,'1 flxJ=--~•V>
)(. .fl ~ (JO
\'.•-en
()0 A.7 .0
2. Let g(x) = 2x 4 - x 1 + 18. Determine the end behavior of g os ~ decrP.gses wiU:iot.Jt geuMd:'"Express your
answer using the mathematical notation of a limit.
)(':~ (1J '}U<.) = c(J
3. Let h(x) = -2x 5 + 8x.
-
Determine the end behavior of has x increases wit_b_gyt brnmd Express your
answer using the mathematical notation of a limit.
,;rt h(x)::-oO
)C-)00
4. h(x) is a polynomial function. Given that Jim h(x) = -oo and lim h(x) = oo, which one of the follow~
x--oo x-oo ~~
is possible? ~ •
f7A\ The leading coefficient of h(x) is 10 and the degree of h(x) is 5 ..,_,~'1f ~
',(} The leading coefficient of h(x) is -6 and the degree of h(x) is 5 )./'
C) The leading coefficient of h(x) is -5 and the degree of h(x) is 4,C -~'~,_.\'- ~
D) The leading coefficient of h(x) is 4 and the degree of h(x) is 6 ~ ...,.yr ~ 04,) ,, .
0 4 1
'\1'' ~-~-
j ~\~'• ~O~~v
i J '-- • ;.I\ 2 -:. 1, fl ~)(""
s. Let f(x) = (3x 2 + 4)(3 - 2x)3(2x 2 - 4x) 3 . Determine the end be~vior off as x decreases without
bound. Express your answer using the mathematical notation of a limit.
1,• M ~(x) =ofJ
-" 7 -~ t,;?L s. • Io _
6. Let g(x") = (3 - x 2 )(Sx + 3) 4 (x3 -"S)(-2x + 3). Determine the end behavior of gas x·increases without
bound. Express your answer using the mathematical notation of a limit.
l ,·,.. 1<x) : ~ •
K-7()0
:l(1. Below are values for g(x), a cubic polynomial. Find the value of g(l 1).
X 8 11 14
(x) 26
8.
.
., ,....
What is the least possible degree of a poly
. .
-3l,:;I : . . ,o~.. . ·,,11,
.
•X_,,\.'~ ·v .,._-"]:; ,t ..lf ~J. I •J·~· 2 •. \'. i-.· i 35,·
f(x) 8 J_ 37 40 41 40 13 -88
~.:, i--'.l ·.l-_:~ .
-·
,. p \
,.a' .,.,.
- . 1'.
"l\
' ·-
;
6"
4
CBHS AP Precalculus 2025/26 - Unit 1, Day 3 HW