Applications – 7th Edition
ST
SOLUTIONS
UV
IA
MANUAL
_A
PP
Allan R. Hambley
RO
Comprehensive Solutions Manual for
VE
Instructors and Students
D?
© Allan R. Hambley
All rights reserved. Reproduction or distribution without permission is prohibited.
Created by MedConnoisseur ©2025/2026
, TABLE OF CONTENTS
Electrical Engineering: Principles & Applications –
7th Edition
Allan R. Hambley
ST
Chapter 1. Introduction: Circuits, Currents, Voltages, Power and Energy,
UV
Kirchhoff’s Laws, Circuit Elements, and Circuit Basics
Chapter 2. Resistive Circuits
Chapter 3. Inductance and Capacitance
Chapter 4. Transients (First and Second Order Circuits, RC, RL, etc.)
IA
Chapter 5. Steady-State Sinusoidal (AC) Analysis
Chapter 6. Frequency Response, Bode Plots, Resonance, Filters
Chapter 7. Logic Circuits
_A
Chapter 8. Computers, Microcontrollers, and Computer-Based Instrumentation
Systems
Chapter 9. Diodes
Chapter 10. Amplifiers: Specifications and External Characteristics
PP
Chapter 11. Field-Effect Transistors
Chapter 12. Bipolar Junction Transistors
Chapter 13. Operational Amplifiers
Chapter 14. Magnetic Circuits and Transformers
RO
Chapter 15. DC Machines
Chapter 16. AC Machines
VE
D?
Created by MedConnoisseur ©2025/2026
, APPENDIX A
Exercises
ST
EA.1 Given Z 1 2 j 3 and Z 2 8 j 6, we have:
Z 1 Z 2 10 j 3
UV
Z 1 Z 2 6 j 9
Z1 Z 2 16 j 24 j 12 j 2 18 34 j 12
IA
2 j 3 8 j 6 16 j 12 j 24 j 2 18
Z1 / Z2 0.02 j 0.36
8 j6 8 j6 100
Th d co of y th
is is p urs an e
an eir le tro
w ro es y p int
th sa es
or v
or ill d
k ide an art egr
is
w
pr d s as f th y o
EA.2 Z 1 1545 15 cos( 45 ) j 15 sin(45 ) 10.6 j 10.6
_A
ot ole se is f t
ec ly s w he
te fo sin or w
Z 2 10 150 10 cos( 150 ) j 10 sin(150 ) 8.66 j 5
d
d o it
by r th g s (in ork
U e u tud clu an
ni s en d d
Z 3 590 5 cos(90 ) j 5 sin(90 ) j 5
te e
d of t le ng is n
St in ar on ot
at st ni t p
es ru ng he er
k
co cto . D W mit
PP
py rs is or ted
EA.3 Notice that Z1 lies in the first quadrant of the complex plane.
rig in se ld .
i
ht te min Wi
la ach at de
Z 1 3 j 4 32 42 arctan( ) 553.13
w
s ing ion We
Notice that Z2 lies on the negative imaginary axis.
RO
Z 2 j 10 10 90
b)
Notice that Z3 lies in the third quadrant of the complex plane.
Z 3 5 j 5 52 52 (180 arctan( 5 / 5)) 7.07 225 7.07 135
VE
EA.4 Notice that Z1 lies in the first quadrant of the complex plane.
Z 1 10 j 10 10 2 10 2 arctan() 14.1445 14.14 exp( j 45 )
D?
Notice that Z2 lies in the second quadrant of the complex plane.
Z 2 10 j 10 10 2 10 2 (180 arctan( ))
14.14 135 14.14 exp( j 135 )
1
© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
, EA.5 Z 1Z 2 (1030 )(20135 ) (10 20)(30 135 ) 200 (165 )
Z1 / Z 2 (1030 ) /(20135 ) ()(30 135 ) 0.5(105 )
ST
Z 1 Z 2 (10 30 ) (20135 ) (8.66 j 5) (14.14 j 14.14)
22.8 j 9.14 24.6 21.8
Z 1 Z 2 (10 30 ) (20135 ) (8.66 j 5) (14.14 j 14.14)
UV
5.48 j 19.14 19.9106
Problems
IA
PA.1 Given Z 1 2 j 3 and Z 2 4 j 3, we have:
Th d co of y th
is is p urs an e
an eir le tro
w ro es y p int
th sa es
or v
Z1 Z2 6 j 0
or ill d
k ide an art egr
is
w
pr d s as f th y o
_A
ot ole se is f t
ec ly s w he
te fo sin or w
Z 1 Z 2 2 j 6
d
d o it
by r th g s (in ork
U e u tud clu an
ni s en d d
te e
d of t le ng is n
St in ar on ot
at st ni t p
Z 1 Z 2 8 j 6 j 12 j 2 9 17 j 6
es ru ng he er
k
co cto . D W mit
PP
py rs is or ted
rig in se ld .
i
ht te min Wi
2 j 3 4 j 3 1 j 18
la ach at de
w
Z1 / Z2 0.04 j 0.72
s ing ion We
4 j3 4 j3 25
RO b)
PA.2 Given that Z 1 1 j 2 and Z 2 2 j 3, we have:
Z1 Z2 3 j 1
VE
Z 1 Z 2 1 j 5
Z1 Z2 2 j 3 j 4 j 2 6 8 j 1
D?
1 j2 2 j3 4 j 7
Z1 / Z2 0.3077 j 0.5385
2 j3 2 j3 13
2
© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.