First Course in Abstract
b b b
Algebra A 8th Edition by John
b b b b b b
B. Fraleigh
b b b b
b All Chapters Full Complete
b b b
, CONTENTS
1. Sets and Relations 1
b b
I. Groups and Subgroups
b b
2. Introduction and Examples 4 b b
3. Binary Operations 7b
4. Isomorphic Binary Structures 9 b b
5. Groups 13
6. Subgroups 17
7. Cyclic Groups 21
b b
8. Generators and Cayley Digraphs 24 b b b
II. Permutations, Cosets, and Direct Products b b b b
9. Groups of Permutations 26b b
10. Orbits, Cycles, and the Alternating Groups b b b b b
30
11. Cosets and the Theorem of Lagrange 34
b b b b b
12. Direct Products and Finitely Generated Abelian Groups 37
b b b b b b
13. Plane Isometries 42
b
III. Homomorphisms and Factor Groups b b b
14. Homomorphisms 44
15. Factor Groups 49
b
16. Factor-Group Computations and Simple Groups 53 b b b b
17. Group Action on a Set 58
b b b b
18. Applications of G-Sets to Counting 61 b b b b
IV. Rings and Fieldsb b
19. Rings and Fields 63
b b
20. Integral Domains 68 b
21. Fermat’s and Euler’s Theorems 72 b b b
22. The Field of Quotients of an Integral Domain
b b b b b b b 74
23. Rings of Polynomials 76
b b
24. Factorization of Polynomials over a Field 79 b b b b b
25. Noncommutative Examples 85 b
26. Ordered Rings and Fields 87 b b b
V. Ideals and Factor Rings
b b b
27. Homomorphisms and Factor Rings 89 b b b
28. Prime and Maximal Ideals 94
b b b
,29. Gröbner Bases for Ideals 99
b b b
, VI. Extension Fields b
30. Introduction to Extension Fields 103 b b b
31. Vector Spaces 107 b
32. Algebraic Extensions 111 b
33. Geometric Constructions 115 b
34. Finite Fields 116
b
VII. Advanced Group Theory b b
35. Isomorphism Theorems 117 b
36. Series of Groups 119
b b
37. Sylow Theorems 122
b
38. Applications of the Sylow Theory 124 b b b b
39. Free Abelian Groups 128
b b
40. Free Groups 130
b
41. Group Presentations 133
b
VIII. Groups in Topology b b
42. Simplicial Complexes and Homology Groups 136
b b b b
43. Computations of Homology Groups 138 b b b
44. More Homology Computations and Applications 140
b b b b
45. Homological Algebra 144 b
IX. Factorization
46. Unique Factorization Domains 148
b b
47. Euclidean Domains 151 b
48. Gaussian Integers and Multiplicative Norms 154
b b b b
X. Automorphisms and Galois Theory b b b
49. Automorphisms of Fields 159 b b
50. The Isomorphism Extension Theorem164
b b b
51. Splitting Fields 165 b
52. Separable Extensions 167 b
53. Totally Inseparable Extensions 171
b b
54. Galois Theory 173 b
55. Illustrations of Galois Theory 176 b b b
56. CyclotomicExtensions 183 b
57. Insolvability of the Quintic 185 b b b
APPENDIX Matrix Algebra b b b b 187
iv