Finite Mathematics & Its Applications
13th Edition by Larry J. Goldstein,
Chapters 1 - 12, Complete
, Contents
Chapter 1: Linear Equations and Straight Lines
md md md md md 1–1
Chapter 2: Matrices
md 2–1
Chapter 3: Linear Programming, A Geometric Approach
md md md md md 3–1
Chapter 4: The Simplex Method
md md md 4–1
Chapter 5: Sets and Counting
md md md 5–1
Chapter 6: Probability
md 6–1
Chapter 7: Probability and Statistics
md md md 7–1
Chapter 8: Markov Processes
md md 8–1
Chapter 9: The Theory of Games
md md md md 9–1
Chapter 10: The Mathematics of Finance
md md md md 10–1
Chapter 11: Logic
md 11–1
Chapter 12: Difference Equations and Mathematical Models
md md md md md 12–1
, Chapter 1
md
Exercises 1.1 5
md
6. Left 1, down
m d md md m d
2
1. Right 2, up 3 md md md
y
y
(2, 3)
md
x
x
( –1, – 52 m d dm
)
dm
7. Left 20, up 40
2. Left 1, up 4
m d md md md
md md md
y
y
(–20, 40)
(–1, 4)
md
md
x
x
8. Right 25, up 30
3. Down 2
m d md md md
m d md
y
y
(25, 30) md
x
x
(0, –2) md
9. Point Q is 2 units to the left and 2 units up or
4. Right 2
md md md md md md md md md md md md
md
y (—2,2). m
d
10. Point P is 3 units to the right and 2 units down or
md md md md md md md md md md md md
(3,—2).
x
(2, 0)
md
1
11. —2(1)+ (3) =—2+1=—1so yes the point is
md
m
d m
d md m
d m
d m
d m
d m d m d m d m d
3
on the line. md md
5. Left 2, up 1 1
12. —2(2)+ (6) =—1is false, so no the point is not
md
md md md
m
d md md m
d m
d m d m d m d m d m d m d m d
y
3
on the line md md
(–2, 1) md
x
Copyright © 2023 Pearson Education, Inc.
md md md md md 1-1
, Chapter 1: Linear Equations and Straight Lines md md md md md md ISM: Finite Math
md md
1 24. 0 = 5
m d md md
—2x + y =—1 Substitute the x and y
m d
13 md md m d m
d m d m d m d m d m d
no solution
3
md
. x-
coordinates of the point into the equation:
intercept: none
md md md md md md
f 1 hı f h
' ,3 →—2 ' 1 ı +1(3)=—1→—1+1=—1 is
md md
m
d
m
d m
d
When x = 0, y = 5y-
y' ı ' ı
m
d m
d m
d m
d m
d m
d m
d m
d m d
m
d
md md md md md md m
d
intercept: (0, 5)
m d
md md
2 J y2J 3 md md
m d m
d
a false statement. So no the point is not on thel
md md md md md md md md md md m
d
25. When y = 0, x = 7x-
md md md md md md md m
d
ine. intercept: (7, 0)0 md md m
d md
f 1h f1h =7 md
14 —2 ' ı + ' ı (—1) =—1 is true so yes the point is no solution
.
m
d m
d m d md md md md md md
md
'y3 ıJ 'y3 ıJ y-intercept: none md
mdmd md
on the line. md md
26. 0 = –8x
m d md md
15. m = 5, b = 8 m d md md md md md
x=0 md md
x-intercept: (0, 0) md md
16. m = –2 and b = –6
m d md md md md md md
y = –8(0) md md
y=0 md md
17. y = 0x + 3; m = 0, b = 3
m d md md md md md md md md md md
y-intercept: (0, 0) md md
2 2 1
0 = x –1
m d
y = x+0; m = , b =0 27
md m
d
md m d md m
d
18 md md m
d m
d m d m
d md m d md m
d
3
3 3 .
. x=3 md md
19. 14x+7y =21 x-intercept: (3, 0) md md
1
m d m
d m
d m
d md m
d
y = (0) –1
md
7y =—14x+21 m
d md m
d m
d m
d
m d m d md m
d
3
y =—2x +3
y = –1
m d m
d md m
d
md md
y-intercept: (0, –1) md md
20 x— y =3 m
d md m d m
d
y
. —y =—x+3 m d m
d m
d m
d
y = x— 3 m d md m
d m
d
(3, 0) x
21. 3x =5
md
mdmdm d md m
d
5 (0, –1)
x=
md
md md
3
1 2
28. When x = 0, y = 0.
– x+ y =10
md md md md md md
22 2
m
d
3
m d m
d
When x = 1, y = 2.
. md md md md md md
2 1 y
y = x +10
m d m d
m d m d md
3 2
3
y = x +15
m d
m d m d md
(1, 2) md
4 x
(0, 0) md
23. 0 =—4x +8 md m
d md m
d
4x = 8 m d md
x =2 md md
x-intercept: (2, 0) md md
y = –4(0) + 8
md md md md
y=8 md md
y-intercept: (0, 8) md md
1-2 Copyright © 2023 Pearson Education, Inc. md md md md md