SOLUTION MANUAL
,Table of contents
1. Euclidean Vector Spaces
2. Systems of Linear Equations
3. Matrices, Linear Mappings, and Inverses
4. Vector Spaces
5. Determinants
6. Eigenvectors and Diagonalization
7. Inner Products and Projections
8. Symmetric Matrices and Quadratic Forms
9. Complex Vector Spaces
, ✐
✐
CHAPTER 1 Euclidean Vector Spaces
1.1 Vectors in R2 and R3
Practice Problems
1 2 1+2 3 3 4 3−4 −1
A1 (a) + = = (b) − = =
4 3 4+3 7 2 1 2−1 1
x2
1 2
1 4 3 3
3 4
4 − 2 4
2 1
2 1
3
4
x1
−1 3(−1) −3 2 3 4 6 −2
(c) 3 = = (d) 2 −2 = − =
4 3(4) 12 1 −1 2 −2 4
3 2 3
4 2 1 2
3 2 2
−2 1 2
−1 1
4 x1
3
−1
x1
4 −1 4 + (−1) 3 −3 −2 −3 − (−2) −1
A2 (a) −2 + 3 = −2 + 3 = 1 (b) −4 − 5 = −4 − 5 = −9
3 (−2)3 −6
(c) −2 = = (d)
21
+ 31
4
=
1
+
4/3
=
7/3
−2 (−2)(−2) 4 62 3 3 1 4
√
√ 3 5
(f) 2 √3 + 3 √6 = √6 + 3√6 = 4√ 6
3 1/4 2 1/2 3/2 2 1 2
1 − 2 1/3 = 2/3 − 2/3 = 0
2
(e) 3
Copyright c 2013 Pearson Canada Inc.
, ✐
✐
2 Chapter 1 Euclidean Vector Spaces
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢2 ⎥ ⎢5 ⎥ ⎢⎢ 2 − 5 ⎥⎥ ⎢−3 ⎥
A3 (a) ⎢3⎥ − ⎢ 1 ⎥ = ⎢ 3 − 1 ⎥ = ⎢ 2 ⎥
⎣ ⎦ ⎣−2⎦ ⎣ ⎦ ⎣ ⎦
4 4 − (−2) 6
⎡ 2⎤ ⎡ ⎤ ⎡ 2 + (−3) ⎤ ⎡ ⎤
⎢−3 ⎥ ⎢⎢ ⎥ ⎢ −1 ⎥
⎢ ⎥
(b) ⎢ 1 ⎥ + ⎢ 1 ⎥ = ⎢ 1 + 1 ⎥ = ⎢ 2 ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
−6 −4 −6 + (−4) −10
⎡ 4⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ (−6)4 ⎥ ⎢⎢−24 ⎥
(c) −6 ⎢−5⎥ = ⎢⎣(−6)(−5)⎦ ⎥ = ⎣⎢ 30 ⎥
⎣ ⎦ 36 ⎦
−6 (−6)(−6)
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢−5 ⎥ ⎢−1 ⎥ ⎢ ⎥ ⎢−3 ⎥ ⎢⎢ ⎥
10 7
(d) −2 ⎣⎢ 1 ⎦⎥ + 3 ⎣⎢ 0 ⎥⎦ = ⎢⎣−2⎦⎥ + ⎣⎢ 0 ⎦⎥ = ⎢⎣−2⎥⎦
1 −1 −2 −3 −5
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ 2/3 ⎥ ⎢3 ⎥ ⎢4/3 ⎥ ⎢ 1 ⎥ ⎢⎢ 7/3 ⎥
(e) 2⎢⎢⎣−1/3⎥⎥⎦ + 3 ⎢⎣−2⎦⎥⎥ = ⎢⎣−2/3⎥⎦ + ⎢⎣−2/3⎥⎦ = ⎢⎢−4/3
1
⎣ ⎥ ⎥⎦
2 1 4 1/3 13/3
⎡ ⎤ ⎡ ⎤ ⎢⎡ √2⎤ ⎡ ⎤ ⎢⎡ √2 − π⎥⎤
√ ⎢ 1⎥ ⎢−1 ⎥ √ ⎥ ⎢ −π ⎥
(f) 2 ⎢ 1⎥ + π ⎢ 0 ⎥ = ⎢ 2⎥ + ⎢ 0 ⎥ = √
⎢⎢ √ 2 ⎥⎥
⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦ ⎢⎣√ ⎥⎦ ⎢⎣ ⎥⎦ ⎣ ⎦
1 1 2 π 2+π
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢2 ⎥ ⎢6 ⎥ ⎢ −4 ⎥
A4 (a) 2 v − 3w = ⎢ 4 ⎥ − ⎢−3⎥ = ⎢ 7 ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
−4 9 −13
⎡ ⎤⎞
⎛ ⎡1 ⎤ ⎡ ⎤ ⎡5⎤ ⎡ ⎤ ⎡ −15⎤ ⎡ ⎤ ⎡ −10⎤
⎢⎢ 4 ⎥⎥⎟⎟ ⎢ 5 ⎢
(b) −3( v + 2w) + 5 v = −3 ⎜⎢ ⎜ ⎢2 ⎥ + −2 +⎢ 10 ⎥ = −3 ⎢0⎥ + ⎢ 10 ⎥ = 0 + ⎢10 ⎥⎥ = ⎢10 ⎥
⎢ ⎥ ⎢ 5 ⎢ ⎥ 5
⎥ ⎢ ⎥⎟ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎝⎣ ⎦ ⎣ ⎦⎠ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎥ ⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦
−2 6 −10 4 −10 −12 −10 −22
(c) We have w − 2u = 3 v, so 2 u = w − 3 v or u = 12(w − 3 v). This gives
⎛ ⎡ ⎤ ⎡ ⎞⎤ ⎡ ⎤ ⎡ ⎤
−1 −1/2 ⎥
1 ⎜ ⎢ ⎥ ⎢ ⎥⎟⎟ 1 ⎢ ⎥⎥ ⎢
2 3
⎝⎢⎣−1⎥⎦⎥ − ⎢⎣ 6⎥⎦⎟
u = 2 ⎜⎜⎢ ⎥⎟⎠ = 2 ⎢⎣−7⎥⎦⎥ = ⎢−7/2
⎣ ⎥⎦
3 −6 9 9/2
⎡ ⎤
−3
⎢ ⎥
(d) We have u − 3 v = 2 u, so u = −3 v = ⎢−6⎥.
⎣ ⎦
6
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢3/2 ⎥ ⎢5/2 ⎥ ⎢ 4 ⎥
A5 (a) 1 v + 1 w = ⎢1/2⎥ + ⎢−1/2⎥ = ⎢ 0 ⎥
2 2 ⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦
1/2 −1 −1/2
⎡ 8⎤ ⎛ ⎡6⎤ ⎡ 15⎤⎥ ⎞ ⎡ 16 ⎤ ⎡ ⎤ ⎡ 25 ⎤
⎢ ⎥ ⎜⎢ ⎥ ⎢ ⎥ ⎟ ⎢⎢ ⎥ ⎢−9 ⎥ ⎢ ⎥
(b) 2( v + w) − (2 v − 3w) = 2 ⎢ 0 ⎥ − ⎜⎢2⎥ − ⎢−3⎥⎟ = ⎢ 0 ⎥ − ⎢ 5 ⎥ = ⎢ −5 ⎥
⎣ ⎦ ⎝⎣ ⎦ ⎣ ⎦⎠ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
−1 2 −6 −2 8 −10
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ 5 ⎥ ⎢6 ⎥ ⎢−1 ⎥
(c) We have w − u = 2 v, so u = w − 2 v. This gives u = ⎢−1⎥ − ⎢2⎥ = ⎢−3⎥.
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
−2 2 −4
Copyright c 2013 Pearson Canada Inc.