100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

Solutions Manual for Numerical and Analytical Methods with MATLAB (1st Edition) by William Bober

Rating
-
Sold
-
Pages
11
Grade
A+
Uploaded on
18-09-2025
Written in
2025/2026

This hands-on solutions manual provides detailed, step-by-step answers to exercises from Numerical and Analytical Methods with MATLAB (1st Edition) by William Bober. It covers essential topics including linear algebra, calculus, differential equations, Fourier analysis, numerical integration, boundary value problems, and PDEs, all demonstrated with practical MATLAB code. Ideal for students in engineering, applied mathematics, and computational sciences, this manual strengthens both the mathematical foundation and MATLAB programming skills needed to model and solve real-world technical problems. numerical methods matlab solutions, bober 1st edition answers, analytical methods in engineering, matlab solved exercises, differential equations with matlab, numerical integration examples, boundary value problem solving, fourier analysis solutions, partial differential equations matlab, linear algebra engineering problems, applied math with matlab, matlab programming in engineering, bober numerical analytical solutions, matlab textbook manual, engineering math computation guide

Show more Read less
Institution
Engineer
Course
Engineer

















Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Engineer
Course
Engineer

Document information

Uploaded on
September 18, 2025
Number of pages
11
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Chapters 2 – 14 Covered




SOLUTIONS

, SOLUTION MANUAL

NUMERICAL AND ANALYTICAL METHODS WITH

MATLAB

Table of Contents

Page

Chapter 2 1

Chapter 3 46

Chapter 4 58

Chapter 5 98

Chapter 6 107

Chapter 7 176

Chapter 8 180

Chapter 9 188

Chapter 10 214

Chapter 11 271

Chapter 12 303

Chapter 13 309

Chapter 14 339




@
@SS
eeisimiciicsiosolalatiotionn
sm

, CHAPTER 2

P2.1. Taylor series expansion of f ( x) about x = 0 is:


f ( x) f (0) f ' (0) x f ' ' (0) 2 f ' ' ' (0) 3 f 1V x 4 ...
x x
2! 3! 4!

For f ( x) cos ( x) , f (0) 1,

f ( x) sin( x), f ' (0) 0,

f ' ' ( x) cos( x), f ' ' (0) 1,

f ' ' ' ( x) sin( x), f ' ' ' (0) 0,

f 1V ( x) cos( x), f 1V (0) 1

We can see that

x x
2 4 6 8
cos( x) 1 x x ...

2! 4! 6! 8!

and that

x2
term (k) term (k 1)
2 k (2 k 1)

The following program evaluates cos( x) by both an arithmetic statement and by the above series

for - x in step of 0.1 .

% cosf.m

% This program evaluates cos(x) by both arithmetic statement and by

% series for - x in steps of 0.1

clear; clc;

xi=-pi; dx=0.1*pi; for j=1:21

x(j)=xi+(j-1)*dx;

cos_arith(j)= cos(x(j));




@ @SS
eeisim1
sm
icisolation

, sum=1.0; term=1.0; for k=1:50

den=2*k*(2*k-1);

term=-term*x(j)^2/den;

sum=sum+term;

test=abs(sum*1.0e-6); if abs(term)

<= test;

break;

end

end cos_ser(j)=sum;

nterms(j)=k;

end fo=fopen('output.dat','w');

fprintf(fo,'x cos(x) cos (x) terms in \n'); fprintf(fo,'

by arith stm by series the series \n');

fprintf(fo,'=====================================================\n');

for j=1:21

fprintf(fo,'%10.5f %10.5f %10.5f %3i \n',...

x(j),cos_arith(j),cos_ser(j),nterms(j));

fprintf(fo,'-------------------------------------------------\n');

end fclose(fo);

plot(x,cos_arith),xlabel('x'),ylabel('cos(x)'), title('cos(x) vs. x'),grid;




@ @SS
eeisim2
sm
icisolation

,Program result:

-----------------------------------------------------------------------------------------
x cos(x) cos (x) terms in
by arith stm by series the series
=====================================================
-3.14159 -1.00000 -1.00000 9
-------------------------------------------------
-2.82743 -0.95106 -0.95106 8
-------------------------------------------------
-2.51327 -0.80902 -0.80902 8
-------------------------------------------------
-2.19911 -0.58779 -0.58779 8
-------------------------------------------------
-1.88496 -0.30902 -0.30902 7
-------------------------------------------------
-1.57080 0.00000 0.00000 14
-------------------------------------------------
-1.25664 0.30902 0.30902 6
-------------------------------------------------
-0.94248 0.58779 0.58779 5
-------------------------------------------------
-0.62832 0.80902 0.80902 4
-------------------------------------------------
-0.31416 0.95106 0.95106 4
------------------------------------------------- 0.00000 1.00000
1.00000 1
------------------------------------------------- 0.31416 0.95106
0.95106 4
------------------------------------------------- 0.62832 0.80902
0.80902 4
------------------------------------------------- 0.94248 0.58779
0.58779 5
------------------------------------------------- 1.25664 0.30902
0.30902 6
------------------------------------------------- 1.57080 0.00000
0.00000 14
------------------------------------------------- 1.88496 -0.30902 -
0.30902 7
------------------------------------------------- 2.19911 -0.58779 -
0.58779 8
------------------------------------------------- 2.51327 -0.80902 -
0.80902 8
------------------------------------------------- 2.82743 -0.95106 -
0.95106 8
------------------------------------------------- 3.14159 -1.00000 -
1.00000 9
-------------------------------------------------




@ @SS
eeisim3
sm
icisolation

, cos(x) vs. x
1

0.8

0.6

0.4

0.2
cos(x)




0

-0.2

-0.4

-0.6

-0.8

-1
-4 -3 -2 -1 0 1 2 3 4
x




P2.2. Taylor series expansion of f ( x) about x = 0 is:


f ( x) f (0) f ' (0) x f ' ' (0) 2 f ' ' ' (0) 3 f 1V x 4 ...
x x
2! 3! 4!

For f ( x) sin ( x) , f (0) 0

f ( x) cos ( x), f ' (0) 1

f ' ' ( x) sin ( x), f ' ' (0) 0

f ' ' ' ( x) cos ( x), f ' ' ' (0) 1

f 1V ( x) sin ( x), f 1V (0) 0

f V ( x) cos ( x), f V (0) 1

We can see that


@ @SS
eeisim4
sm
icisolation

, x x3 x5 x 7 9
sin ( x) x ...
3! 5! 7! 9!

and that

x2
term (k) term (k 1)
2 k (2 k 1)



The following program evaluates sin ( x) by both an arithmetic statement and by the above

series for - x in step of 0.1 .



Program

% sinf.m

% This program evaluates sin(x) by both arithmetic statement and by

% series for - x in steps of 0.1

clear; clc;

xi=-pi; dx=0.1*pi; for j=1:21

x(j)=xi+(j-1)*dx;

sin_arith(j)= sin(x(j));

sum=x(j); term=x(j); for k=1:50

den=2*k*(2*k+1);

term=-term*x(j)^2/den;

sum=sum+term;

test=abs(sum*1.0e-6); if abs(term)

<= test;

break;

end




@ @SS
eeisim5
sm
icisolation

, end sin_ser(j)=sum;

nterms(j)= k;

end fo=fopen('output.dat','w');

fprintf(fo,'x sin(x) sin (x) terms in \n'); fprintf(fo,'

by arith stm by series the series \n');

fprintf(fo,'=====================================================\n');

for j=1:21

fprintf(fo,'%10.5f %10.5f %10.5f %3i \n',...

x(j),sin_arith(j),sin_ser(j),nterms(j));

fprintf(fo,'-------------------------------------------------\n');

end fclose(fo);

plot(x,sin_arith),xlabel('x'),ylabel('sin(x)'),title('sin(x)vs. x'),grid;




Program Results

---------------------------------------------------------------------------------------
x sin(x) sin (x) terms in
by arith stm by series the series
=====================================================
-3.14159 -0.00000 -0.00000 17
-------------------------------------------------
-2.82743 -0.30902 -0.30902 8
-------------------------------------------------
-2.51327 -0.58779 -0.58779 8
-------------------------------------------------
-2.19911 -0.80902 -0.80902 7
-------------------------------------------------
-1.88496 -0.95106 -0.95106 6
-------------------------------------------------
-1.57080 -1.00000 -1.00000 6
-------------------------------------------------
-1.25664 -0.95106 -0.95106 5
-------------------------------------------------
-0.94248 -0.80902 -0.80902 5
-------------------------------------------------




@ @SS
eeisim6
sm
icisolation

, -0.62832 -0.58779 -0.58779 4
-------------------------------------------------
-0.31416 -0.30902 -0.30902 3
------------------------------------------------- 0.00000 0.00000
0.00000 1
------------------------------------------------- 0.31416 0.30902
0.30902 3
------------------------------------------------- 0.62832 0.58779
0.58779 4
------------------------------------------------- 0.94248 0.80902
0.80902 5
------------------------------------------------- 1.25664 0.95106
0.95106 5
------------------------------------------------- 1.57080 1.00000
1.00000 6
------------------------------------------------- 1.88496 0.95106
0.95106 6
------------------------------------------------- 2.19911 0.80902
0.80902 7
------------------------------------------------- 2.51327 0.58779
0.58779 8
------------------------------------------------- 2.82743 0.30902
0.30902 8
------------------------------------------------- 3.14159 0.00000
0.00000 17
-------------------------------------------------




P2.3. To show that eix = cos (x) + i sin (x) and e-ix = cos (x) – i sin (x) by a Taylor series

expansions about x = 0.

f ( x) f (0) f ' (0) x f ' ' (0) 2 f ' ' ' (0) 3 f 1V x 4 ...
x x
2! 3! 4!

For f ( x) eix , f (0) 1

f ' ( x) i eix , f ' (0) i

f ' ' ( x) eix , f ' ' (0) 1

f ' ' ' ( x) i eix , f ' ' ' (0) i

f 1V ( x) eix , f 1V (0) 1

f V ( x) i eix , f V (0) i



@ @SS
eeisim7
sm
icisolation

, THOSE WERE PREVIEW PAGES

TO DOWNLOAD THE FULL PDF

CLICK ON THE L.I.N.K

ON THE NEXT PAGE

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
ProfHampton Liberty University
View profile
Follow You need to be logged in order to follow users or courses
Sold
362
Member since
2 year
Number of followers
79
Documents
2313
Last sold
2 hours ago

3.4

41 reviews

5
14
4
7
3
8
2
4
1
8

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions