100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

A Complete Solution Guide to Principles of Mathematical Analysis by Kit-Wing Yu (2019) – Fully Worked Solutions to Rudin's Analysis

Rating
-
Sold
-
Pages
11
Grade
A+
Uploaded on
15-09-2025
Written in
2025/2026

This comprehensive solution guide by Kit-Wing Yu provides fully worked, step-by-step solutions to all exercises in Walter Rudin’s Principles of Mathematical Analysis (“Baby Rudin”) — one of the most challenging and widely used real analysis textbooks in undergraduate and graduate mathematics programs. Covering all chapters, including real number properties, metric spaces, sequences, continuity, differentiation, Riemann-Stieltjes integration, series, multivariable functions, and Lebesgue theory preview, this guide is essential for mastering rigorous proofs and concepts. Ideal for self-study, coursework support, and exam preparation. rudin solution guide, principles of mathematical analysis answers, kit wing yu solutions, baby rudin complete solutions, real analysis textbook solutions, metric space problems solved, sequence and series analysis, rudin chapter exercises, advanced calculus proof solutions, real analysis practice problems, mathematical analysis solved pdf, rudin 3rd edition solutions, honors analysis textbook guide, rigorous proof writing practice, real analysis for mathematics majors

Show more Read less
Institution
Mathematical
Course
Mathematical

















Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Mathematical
Course
Mathematical

Document information

Uploaded on
September 15, 2025
Number of pages
11
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Covers All 11 Chapters

,List of Figures


2.1 The neighborhoods Nh(q) and Nr(p)........................................................................................................................ 13
2.2 Convex sets and nonconvex sets ....................................................................................................................................23
2.3 The sets Nh(x), N h (x)2and Nqm (xk) ...................................................................................................................25
2.4 The construction of the shrinking sequence ...................................................................................................................29

3.1 The Cantor set ......................................................................................................................................................... 49

4.1 The graph of g on [an, bn]. ................................................................................................................................ 59
4.2 The sets E and Ini ...............................................................................................................63
4.3 The graphs of [x] and (x)......................................................................................................................................... 70

4.4 An example for α = 2 and n = 5 ................................................................................................................... 72
4.5 The distance from x ∈ X to E .................................................................................................................................. 74
4.6 The graph of a convex function f ...................................................................................... 76
4.7 The positions of the points p, p + κ, q − κ and q ....................................................................................................... 77

5.1 The zig-zag path of the process in (c) .................................................................................................................. 105
5.2 The zig-zag path induced by the function f in Case (i) .................................................................................108
5.3 The zig-zag path induced by the function g in Case (i) ................................................................................109
5.4 The zig-zag path induced by the function f in Case (ii) ................................................................................109
5.5 The zig-zag path induced by the function g in Case (ii) ...................................................................................... 110
5.6 The geometrical interpretation of Newton’s method .............................................................................................. 111

8.1 The graph of the continuous function y = f(x) = (π − |x|)2 on [−π, π]. ................................................................. 186
8.2 The graphs of the two functions f and g .......................................................................................................197
8.3 A geometric proof of 0 < sin x ≤ x on (0, π ]. .........................................................................................................
2
199
8.4 The graph of y = | sin x| ..................................................................................................................................................199
8.5 The winding number of γ around an arbitrary point p ........................................................................................... 202
8.6 The geometry of the points z, f (z) and g(z)..................................................................................................... 209

9.1 An example of the range K of f............................................................................................................................. 219
9.2 The set of q ∈ K such that (∇f3)(f−1(q)) = 0 ..................................................................................................220
9.3 Geometric meaning of the implicit function theorem .............................................................................................. 232
9.4 The graphs around the four points ...............................................................................................................................233
9.5 The graphs around (0, 0) and (1, 0) ....................................................................................................................... 236
9.6 The graph of the ellipse X 2 + 4Y 2 = 1 ................................................................................................................... 239
9.7 The definition of the function ϕ(x, t) ....................................................................................................................... 243
9.8 The four regions divided by the two lines αx1 + βx2 = 0 and αx1 − βx2 = 0 ........................................................... 252

10.1 The compact convex set H and its boundary ∂H ........................................................................................ 256
10.2 The figures of the sets Ui, Wi and Vi ..................................................................................................................... 264
10.3 The mapping T : I2 → H........................................................................................................................................ 269
10.4 The mapping T : A → D ........................................................................................................................................ 270
10.5 The mapping T : A◦ → D0 ..................................................................................................................................... 271
10.6 The mapping T : S → Q ....................................................................................................................................... 277

vii

,List of Figures viii

10.7 The open sets Q0.1, Q0.2 and Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
10.8 The mapping T : I3 → Q3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
10.9 The mapping τ1 : Q2 → I 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
10.10The mapping τ2 : Q2 → I2 . . . . . 10.11The . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
mapping τ2 : Q2 → I2 . . . . . 10.12The mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Φ : D → R2 \ {0}. .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296T
10.13 ...................................................................................................................................
he spherical coordinates for the point Σ(u, v) ................................................................................................... 300
10.14 ................................................................................................................................... T
he rectangles D and E .......................................................................................................................................... 302
10.15 ................................................................................................................................... A
n example of the 2-surface S and its boundary ∂S ................................................................................ 304
10.16 ................................................................................................................................... T
he unit disk U as the projection of the unit ball V ................................................................................................ 325
10.17 ................................................................................................................................... T
he open cells U and V .......................................................................................................................................... 326
10.18 ................................................................................................................................... T
he parameter domain D......................................................................................................................................... 332
10.19 ................................................................................................................................... T
he figure of the Möbius band ................................................................................................................................ 333
10.20 .................................................................................................................................. T
he “geometric” boundary of M ............................................................................................................................... 335

11.1 The open square Rδ ((p, q)) and the neighborhood N√ 2δ ((p, q))........................................................... 350

B.1 The plane angle θ measured in radians ............................................................................................................... 365
B.2 The solid angle Ω measured in steradians .......................................................................................................... 366
B.3 A section of the cone with apex angle 2θ ............................................................................................................ 366

,List of Tables


6.1 The number of intervals & end-points and the length of each interval for each En ............................................... 121

9.1 Expressions of x around four points .............................................................................................................................234
9.2 Expressions of y around four points .............................................................................................................................235




ix

,List of Tables x

,Contents


Preface v

List of Figures vii

List of Tables ix

1 The Real and Complex Number Systems 1
1.1 Problems on rational numbers and fields.........................................................................................................................1
1.2 Properties of supremums and infimums ...........................................................................................................................2
1.3 An index law and the logarithm ................................................................................................................................. 2
1.4 Properties of the complex field ..........................................................................................................................................5
1.5 Properties of Euclidean spaces ................................................................................................................................. 7
1.6 A supplement to the proof of Theorem 1.19 ............................................................................................................. 9

2 Basic Topology 11
2.1 The empty set and properties of algebraic numbers ....................................................................................................11
2.2 The uncountability of irrational numbers.........................................................................................................................12
2.3 Limit points, open sets and closed sets .........................................................................................................................12
2.4 Some metrics.....................................................................................................................................................................15
2.5 Compact sets ....................................................................................................................................................................17
2.6 Further topological properties of R .......................................................................................................................... 18
2.7 Properties of connected sets ...........................................................................................................................................21
2.8 Separable metric spaces and bases and a special case of Baire’s theorem ......................................................... 24

3 Numerical Sequences and Series 31
3.1 Problems on sequences ...................................................................................................................................................31
3.2 Problems on series .................................................................................................................................................. 33
3.3 Recursion formulas of sequences ...................................................................................................................................45
3.4 A representation of the Cantor set........................................................................................................................... 49
3.5 Cauchy sequences and the completions of metric spaces ...................................................................................... 50

4 Continuity 57
4.1 Properties of continuous functions...................................................................................................................................57
4.2 The extension, the graph and the restriction of a continuous function ........................................................................58
4.3 Problems on uniformly continuous functions ..................................................................................................................63
4.4 Further properties of continuous functions ......................................................................................................................68
4.5 Discontinuous functions ....................................................................................................................................................69
4.6 The distance function ρE .......................................................................................................................................... 73
4.7 Convex functions ...............................................................................................................................................................76
4.8 Other properties of continuous functions ........................................................................................................................81

xi

, Contents

5 Differentiation 85
5.1 Problems on differentiability of a function.......................................................................................................................85
5.2 Applications of Taylor’s theorem .............................................................................................................................. 96
5.3 Derivatives of higher order and iteration methods ................................................................................................. 102
5.4 Solutions of differential equations ..................................................................................................................................113

6 The Riemann-Stieltjes Integral 117
6.1 Problems on Riemann-Stieltjes integrals ......................................................................................................................117
6.2 Definitions of improper integrals ....................................................................................................................................122
6.3 Hölder’s inequality .................................................................................................................................................. 126
6.4 Problems related to improper integrals ........................................................................................................................130
6.5 Applications and a generalization of integration by parts ...................................................................................... 133
6.6 Problems on rectifiable curves ......................................................................................................................................137

7 Sequences and Series of Functions 141
7.1 Problems on uniform convergence of sequences of functions ...................................................................................141
7.2 Problems on equicontinuous families of functions .......................................................................................................157
7.3 Applications of the (Stone-)Weierstrass theorem ................................................................................................... 164
7.4 Isometric mappings and initial-value problems.............................................................................................................167

8 Some Special Functions 173
8.1 Problems related to special functions ...........................................................................................................................173
8.2 Index of a curve ..............................................................................................................................................................201
8.3 Stirling’s formula ..............................................................................................................................................................210

9 Functions of Several Variables 213
9.1 Linear transformations ........................................................................................................................................... 213
9.2 Differentiable mappings ..................................................................................................................................................215
9.3 Local maxima and minima ..................................................................................................................................... 219
9.4 The inverse function theorem and the implicit function theorem ........................................................................... 226
9.5 The rank of a linear transformation ....................................................................................................................... 237
9.6 Derivatives of higher order ..................................................................................................................................... 241

10 Integration of Differential Forms 255
10.1 Integration over sets in Rk and primitive mappings .....................................................................................................255
10.2 Generalizations of partitions of unity.............................................................................................................................263
10.3 Applications of Theorem 10.9 (Change of Variables Theorem) ............................................................................ 267
10.4 Properties of k-forms and k-simplexes .................................................................................................................. 284
10.5 Problems on closed forms and exact forms ......................................................................................................... 294
10.6 Problems on vector fields...............................................................................................................................................330

11 The Lebesgue Theory 337
11.1 Further properties of integrable functions .....................................................................................................................337
11.2 The Riemann integrals and the Lebesgue integrals ....................................................................................................340
11.3 Functions of classes L and L 2 .....................................................................................................................345

Appendix 355

A A proof of Lemma 10.14 355

B Solid angle subtended by a surface at the origin 365

C Proofs of some basic properties of a measure 369

Index 377

Bibliography 379

, CHAPTER 1
The Real and Complex Number Systems


Unless the contrary is explicitly stated, all numbers that are mentioned in these exercises are understood to be real.

1.1 Problems on rational numbers and fields

Problem 1.1
Rudin Chapter 1 Exercise 1.


Proof. Assume that r + x was rational. Then it follows from Definition 1.12(A1), (A4) and (A5) that

x = (r + x) − x
is also rational, a contradiction. Similarly, if rx was rational, then it follows from Definition 1.12(M1), M(4) and M(5) that
rx
x=
x
is also rational, a contradiction. This ends the proof of the problem.

Problem 1.2
Rudin Chapter 1 Exercise 2.

√ √
Proof. Assume that 12 was rational so that 12 = m , where m and n
n are co-prime integers. Then we have m2 = 12n2 and
thus m is divisible by 3. Let m = 3k for some integer k. Then we have m2 = 9k2
and this shows that
4n 2
k2 = ,
3
so n is divisible by 3. This contradicts the fact that m and n are co-prime, completing the proof of the problem.

Problem 1.3
Rudin Chapter 1 Exercise 3.


Proof. Since x 6= 0, there exists 1
∈ F such that x · 1 = 1.
x x

(a) Therefore, it follows from Definition 1.12(M2), (M3), (M4) and (M5) that xy = xz implies that
y = z.

1

,Chapter 1. The Real and Complex Number Systems 2

(b) Similarly, it follows from Definition 1.12(M2), (M3), (M4) and (M5) that xy = x implies that y = 1.

(c) Similarly, it follows from Definition 1.12(M2), (M3), (M4) and (M5) that xy = 1 implies that y = 1 . x
(d) Since 1 ∈ F , we have 1
∈ F such that 1 · 1 = 1. Now we have 1 · 1 1
= 1 · x(= 1), then Proposition
x 1 x 1 x x
x x x
1
1.15(a) implies that 1 = x.
x


This completes the proof of the problem.


1.2 Properties of supremums and infimums

Problem 1.4
Rudin Chapter 1 Exercise 4.



Proof. Since E ⊂ S, the definitions give α ≤ x and x ≤ β for all x ∈ E. Thus Definition 1.5(ii) implies that α ≤ β. This
completes the proof of the problem.

Problem 1.5
Rudin Chapter 1 Exercise 5.



Proof. Theorem 1.19 says that R is an ordered set with the least-upper-bound property. Since A is a non-empty subset of
R and A is bounded below, inf A exists in R by Definition 1.10. Furthermore, −A is a non-empty subset of R. Let y be a lower
bound of A, i.e. y ≤ x for all x ∈ A. Then we have −x ≤ −y for all x ∈ A. Thus −y is an upper bound of −A and sup(−A)
exists in R by Definition 1.10.
Let α = inf A and β = sup(−A). By definition, we have y ≤ β for all y ∈ −A, where y = −x for some x ∈ A. It implies
that x = −y ≥ −β for all x ∈ A, so −β is a lower bound of A and then −β ≤ α. Similarly, we have α ≤ x for all x ∈ A so that
−α ≥ −x for all x ∈ A. It implies that −α is an upper bound of −A, so β ≤ −α and then −β ≥ α. Hence we have α = −β,
i.e. inf A = − sup(−A). This completes the proof of the problem.


1.3 An index law and the logarithm

Problem 1.6
Rudin Chapter 1 Exercise 6.



Proof.

(a) Since bm > 0 and n ∈ N, Theorem 1.21 implies that there exists one and only one real y such that
yn = bm. Similarly, there exists one and only one real z such that zq = bp. We have

ynq = (yn)q = (bm)q = bmq = bpn = (bp)n = (zq)n = z qn
1 1
which implies that y = z, i.e., (bm) n = (bp ) q .
m p
(b) Let br = b n and bs = b q . Without loss of generality, we may assume that n and q are positive.
Then the corollary of Theorem 1.21 implies that
mq+np 1 p
1 11 m

mq+np mq np mq np r s
br+s =b nq = (b ) nq = (b ×b ) nq = (b ) nq × (b ) nq = b ×b = b ×b .
n q

, THOSE WERE PREVIEW PAGES

TO DOWNLOAD THE FULL PDF

CLICK ON THE L.I.N.K

ON THE NEXT PAGE

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
ProfHampton Liberty University
View profile
Follow You need to be logged in order to follow users or courses
Sold
349
Member since
2 year
Number of followers
79
Documents
2298
Last sold
2 days ago

3.4

40 reviews

5
14
4
7
3
8
2
3
1
8

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions