100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solutions Manual – Atkins' Physical Chemistry, 12th Edition by Atkins |19 Chapters Covered| Newest Updated Edition Complete Test Bank

Rating
-
Sold
-
Pages
552
Grade
A+
Uploaded on
14-08-2025
Written in
2025/2026

Solutions Manual – Atkins' Physical Chemistry, 12th Edition by Atkins |19 Chapters Covered| Newest Updated Edition Complete Test Bank

Institution
Atkins\\\' Physical Chemistry, 12t
Course
Atkins\\\' Physical Chemistry, 12t











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Atkins\\\' Physical Chemistry, 12t
Course
Atkins\\\' Physical Chemistry, 12t

Document information

Uploaded on
August 14, 2025
Number of pages
552
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

, 1 The properties of gases
1A The perfect gas
Answers to discussion questions
1A.2 The partial pressure of a gas in a mixture of gases is the pressure the gas would exert if it
occupied alone the same container as the mixture at the same temperature. Dalton’s law is a
limiting law because it holds exactly only under conditions where the gases have no effect
upon each other. This can only be true in the limit of zero pressure where the molecules of
the gas are very far apart. Hence, Dalton’s law holds exactly only for a mixture of perfect
gases; for real gases, the law is only an approximation.


Solutions to exercises
1A.1(b) The perfect gas law [1A.5] is pV = nRT, implying that the pressure would be
nRT
p=
V
All quantities on the right are given to us except n, which can be computed from the given
mass of Ar.
25 g
n= −1
= 0.626 mol
39.95 g mol
(0.626 mol) × (8.31 × 10−2 dm 3 bar K −1 mol−1 ) × (30 + 273) K
so p= = 10.5bar
1.5 dm 3
So no, the sample would not exert a pressure of 2.0 bar.
1A.2(b) Boyle’s law [1A.4a] applies.
pV = constant so pfVf = piVi
Solve for the initial pressure:
pV (1.97 bar) × (2.14 dm 3 )
(i) pi = f f = = 1.07 bar
Vi (2.14 + 1.80) dm 3
(ii) The original pressure in Torr is
 1 atm   760 Torr 
pi = (1.07 bar) ×  × = 803 Torr
 1.013 bar   1 atm 

1A.3(b) The relation between pressure and temperature at constant volume can be derived from the
perfect gas law, pV = nRT [1A.5]
pi pf
so p ∝ T and =
Ti Tf
The final pressure, then, ought to be
pT (125 kPa) × (11 + 273)K
pf = i f = = 120 kPa
Ti (23 + 273)K

1A.4(b) According to the perfect gas law [1.8], one can compute the amount of gas from pressure,
temperature, and volume.
pV = nRT
pV (1.00 atm) × (1.013 × 105 Pa atm −1 ) × (4.00 × 103 m 3 )
so n= = = 1.66 × 105 mol
RT (8.3145 J K −1mol−1 ) × (20 + 273)K
Once this is done, the mass of the gas can be computed from the amount and the molar
mass:
−1
m = (1.66 × 105 mol) × (16.04 g mol ) = 2.67 × 106 g = 2.67 × 103 kg

1A.5(b) The total pressure is the external pressure plus the hydrostatic pressure [1A.1], making the
total pressure


1

, p = pex + ρgh .
Let pex be the pressure at the top of the straw and p the pressure on the surface of the liquid
(atmospheric pressure). Thus the pressure difference is
3
−3 1 kg  1 cm 
p − pex = ρ gh = (1.0 g cm ) × 3 ×  −2  × (9.81 m s −2 ) × (0.15m)
10 g  10 m 
= 1.5 × 103 Pa = 1.5 × 10−2 atm

1A.6(b) The pressure in the apparatus is given by
p = pex + ρgh [1A.1]
where pex = 760 Torr = 1 atm = 1.013×105 Pa,
3
 1 kg   1 cm 
and ρ gh = 13.55 g cm −3 ×  × × 0.100 m × 9.806 m s −2 = 1.33 × 104 Pa
 103 g   10−2 m 
p = 1.013 × 105 Pa + 1.33 × 104 Pa = 1.146 × 105 Pa = 115 kPa

pV pVm
1A.7(b) Rearrange the perfect gas equation [1A.5] to give R = =
nT T
All gases are perfect in the limit of zero pressure. Therefore the value of pVm/T extrapolated
to zero pressure will give the best value of R.
The molar mass can be introduced through
m
pV = nRT = RT
M
m RT RT
which upon rearrangement gives M = =ρ
V p p
The best value of M is obtained from an extrapolation of ρ/p versus p to zero pressure; the
intercept is M/RT.
Draw up the following table:
p/atm (pVm/T)/(dm3 atm K–1 mol–1) (ρ/p)/(g dm–3 atm–1)
0.750 000 0.082 0014 1.428 59
0.500 000 0.082 0227 1.428 22
0.250 000 0.082 0414 1.427 90
 pV 
From Figure 1A.1(a), R = lim  m  = 0.082 062 dm 3 atm K −1 mol−1
p→0
 T 
Figure 1A.1

(a)




2

, (b)




 ρ
From Figure 1A.1(b), lim   = 1.427 55 g dm -3 atm −1
p→0  p 


 ρ
M = lim RT   = (0.082062 dm 3 atm K −1 mol−1 ) × (273.15 K) × (1.42755 g dm -3 atm −1 )
p→0  p
= 31.9988 g mol−1
The value obtained for R deviates from the accepted value by 0.005 per cent, better than can
be expected from a linear extrapolation from three data points.
1A.8(b) The mass density ρ is related to the molar volume Vm by
V V m M
Vm = = × =
n m n ρ
where M is the molar mass. Putting this relation into the perfect gas law [1A.5] yields
pM
pVm = RT so = RT
ρ
Rearranging this result gives an expression for M; once we know the molar mass, we can
divide by the molar mass of phosphorus atoms to determine the number of atoms per gas
molecule.
−1
RT ρ (8.3145 Pa m 3 mol ) × [(100 + 273) K] × (0.6388 kg m −3 )
M= =
p 1.60 × 104 Pa
= 0.124 kg mol−1 = 124 g mol−1

The number of atoms per molecule is
−1
124 g mol
−1
= 4.00
31.0 g mol
suggesting a formula of P4 .
1A.9(b) Use the perfect gas equation [1A.5] to compute the amount; then convert to mass.
pV
pV = nRT so n=
RT
We need the partial pressure of water, which is 53 per cent of the equilibrium vapour
pressure at the given temperature and standard pressure. (We must look it up in a handbook
like the CRC or other resource such as the NIST Chemistry WebBook.)
p = (0.53) × (2.81 × 103 Pa) = 1.49 × 103 Pa



3

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
CorrectSCORE Havard School
View profile
Follow You need to be logged in order to follow users or courses
Sold
88
Member since
7 months
Number of followers
3
Documents
1226
Last sold
1 day ago
correctSORE HUB

Welcome to correctSCORE, your trusted partner for premium study guides, test banks, and exam prep resources designed to help you learn, master, and achieve. Learning to Become isn’t just a slogan, it’s our mission. We believe every student deserves clear, reliable study support to become the best version of themselves, academically and professionally. Verified test banks for top textbooks and exams, Detailed practice questions with rationales Whether you’re studying Nursing, Pharmacology, Radiography, Business or Health Sciences, we’re here to help you learn smarter, score higher, and become more confident. Explore our library, download instantly, and start Learning to Become today.

Read more Read less
3.7

10 reviews

5
4
4
3
3
1
2
0
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions