100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

TEST BANK FOR Linear Algebra: A Modern Introduction 5th Edition by David Poole ISBN:978-8214013054 COMPLETE GUIDE ALL CHAPTERS COVERED 100% VERIFIED A+ GRADE ASSURED!!!!!NEW LATEST UPDATE!!!!!

Rating
-
Sold
-
Pages
169
Grade
A+
Uploaded on
31-07-2025
Written in
2024/2025

TEST BANK FOR Linear Algebra: A Modern Introduction 5th Edition by David Poole ISBN:978-8214013054 COMPLETE GUIDE ALL CHAPTERS COVERED 100% VERIFIED A+ GRADE ASSURED!!!!!NEW LATEST UPDATE!!!!!

Institution
Linear Algebra: A Modern Introduction 5th Edition
Course
Linear Algebra: A Modern Introduction 5th Edition











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Linear Algebra: A Modern Introduction 5th Edition
Course
Linear Algebra: A Modern Introduction 5th Edition

Document information

Uploaded on
July 31, 2025
Number of pages
169
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Copyright Cengage Learning. Powered by Cognero
mf mf mf mf mf Page 1
mf


.

, Test Bank For mf mf




Linear Algebra A Modern Introduction 5th Edition by David Poole
mf mf mf mf mf mf mf mf mf mf




Section 1.0 - 1.4 mf mf mf




1. If u • v = 0, then ||u + v|| = ||u – v||.
mf mf mf mf mf mf mf mf mf mf mf mf mf



a. True
b. False

2. If u • v = u • w, then either u = 0 or v = w.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



a. True
b. False

3. a • b × c = 0 if and only if the vectors a, b, c are coplanar.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



a. True
b. False

n
located by the vectors u and v is ||u – v||.
mf

4. The distance between two points in
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf




a. True
b. False

5. If v is any nonzero vector, then 6v is a vector in the same direction as v with a length of 6 units.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



a. True
b. False

6. The only real number c for which [c, –2, 1] is orthogonal to [2c, c, –4] is c = 2.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



a. True
b. False

7. The projection of a vector v onto a vector u is undefined if v = 0.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



a. True
b. False


8. The area of the parallelogram with sides a, b, is
mf mf mf mf mf mf mf mf mf m f mf || ||
mf




a. True
b. False

2 2 2 2
, then (a × b • c) = ||a|| ||b|| ||c|| .
mf

9. If a, b, c are mutually orthogonal vectors in
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf




a. True
b. False

10. For all vectors v and scalars c, ||cv|| = c||v||.
mf mf mf mf mf mf mf mf mf



a. True
b. False
Copyright Cengage Learning. Powered by Cognero
mf mf mf mf mf Page 2
mf


.

, n
11. For all vectors u, v, w in
mf mf mf mf mf mf mf , u – (v – w) = u + w – v.
mf mf mf mf mf mf mf mf mf mf mf




a. True
b. False

12. The projection of a vector v onto a vector u is undefined if u = 0.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



a. True
b. False

13. The vectors [1, 2, 3] and [k, 2k, 3k] have the same direction for all nonzero real numbers k?
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



a. True
b. False

14. If a parity check code is used in the transmission of a message consisting of a binary vector, then the total number
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



of 1’s in the message will be even.
mf mf mf mf mf mf mf



a. True
b. False

15. The distance between the planes n • x = d1 and n • x = d2 is |d1 – d2|.
mf mf mf mf mf mf mf mf mf
mf
mf mf mf mf mf
mf
mf
mf
mf



a. True
b. False

16. The zero vector is orthogonal to every vector except itself.
mf mf mf mf mf mf mf mf mf



a. True
b. False

17. The products a × (b × c) and (a × b) × c are equal if and only if b = 0.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



a. True
b. False




18. Simplify the following vector expression: 4u – 2(v + 3w) + 6(w
mf mf mf mf mf mf mf mf mf mf mf mf mf u).


19. Find all solutions of 3x + 5 = 2 in
mf mf mf mf mf mf mf mf mf mf , or show that there are no solutions.
mf mf mf mf mf mf mf




a. 2
m f



b. 4
m f



c. 6
m f



d. 8
m f




Find the distance between the parallel lines.
mf mf mf mf mf mf mf


20.
and
mf mf




21. Find the acute angle between the planes
mf mf mf mf mf mf mf mf 3 and mf mf .


Copyright Cengage Learning. Powered by Cognero
mf mf mf mf mf Page 3
mf


.

, 22. Find the distance between the planes mf mf mf mf mf mf m f and mf .

23. Find values of the scalar k for which the following vectors are orthogonal.
mf mf mf mf mf mf mf mf mf mf mf mf



u = [k, k, –2], v = [–2, k – 1, 5]
mf mf mf mf mf mf mf mf mf mf mf




24. Simplify the following expressions: mf mf mf



(a) (a + b + c) × c + (a + b + c) × b + (b – c) × a
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



(b) (v + 2w) ∙ (w + z) × (3z + v)
mf mf mf mf mf mf mf mf mf mf




25. Find the check digit that should be appended to the vector u = [2, 5, 6, 4, 5] in
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf if the check vector is c = [1, 1, 1, 1,
mf mf mf mf mf mf mf mf mf mf




1, 1]. mf




26. If u is orthogonal to v, then which of the following is also orthogonal to v?
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf




27. What is the distance of the point P = (2, 3, –1) to the line of intersection of the planes 2x – 2y + z = –3 and 3x –
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



2y + 2z = –17?
mf mf mf mf mf




28. In a parallelogram ABCD let
mf mf mf mf mf mf = a, mf mf mf b. Let M be the point of intersection of the diagonals. Express
mf mf mf mf mf mf mf mf mf mf mf mf




, mf mf and m f m f as linear combinations of a and b.
mf mf mf mf mf mf




29. Suppose that the dot product of u = [u1, u2] and v = [v1, v2] in
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



2 mf

were defined as u · v = 5u1 v1 + 2u2 v2. Consider the following statements for vectors u, v, w, and all scalars c.
mf mf mf mf mf mf mf
mf mf
mf
mf
mf mf mf mf mf mf mf mf mf mf mf mf mf



a. u · v = v · umf mf mf mf mf mf



b. u · (v + w) = u · v + u · w
mf mf mf mf mf mf mf mf mf mf mf mf



c. (cu) · v = c(u · v) mf mf mf mf mf mf



d. u · u ≥ 0 and u · u = 0 if and inly if u = 0
mf mf mf mf mf m f mf mf mf mf mf mf mf mf mf mf mf




30. Find a value of k so that the angle between the line 4x + ky = 20 and the line 2x – 3y = –6 is 45°.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf




31. Find the orthogonal projection of v = [–1, 2, 1] onto the xz-plane.
mf mf mf mf mf mf mf mf mf mf mf mf




32. Show that the quadrilateral with vertices A = (–3, 5, 6), B = (1, –5, 7), C = (8, –3, –1) and D = (4, 7, –2) is a square.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf




33. If a = [1, –2, 3], b = [4, 0, 1], c = [2, 1, –3], compute 2a – 3b + 4c.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf




3
that is perpendicular to the plane 2x – 3y + 7z –
mf

34. Find the vector parametric equation of the line in
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf




4 = 0 and which passes through the point P = (l, –5, 7).
mf mf mf mf mf mf mf mf mf mf mf mf mf mf




35. Find all values of k such that d(a, b) = 6, where a = [2, k, 1, –4] and b = [3, –1, 6, –3].
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf




36. Show that if a vector v is orthogonal to two noncollinear vectors in a plane P, then v is orthogonal to every vector in
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



P.

37. Final all solutions of 7x = 1 in mf mf mf mf mf mf mf mf , or show that there are no solutions.
mf mf mf mf mf mf mf




38. Let u1 and u2 be unit vectors, and let the angle between them be
mf
mf
mf
mf
mf mf mf mf mf mf mf mf mf m f




m f radians. What is the area of the parallelogram whose diagonals are d1 = 2u1 – u2 and d2 = 4u1 –5u2?
mf mf mf mf mf mf mf mf mf mf mf
mf
mf
mf
mf
mf
mf
mf
mf
mf




Copyright Cengage Learning. Powered by Cognero
mf mf mf mf mf Page 4mf


.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
MindFuel Harvard University
View profile
Follow You need to be logged in order to follow users or courses
Sold
41
Member since
8 months
Number of followers
1
Documents
397
Last sold
1 week ago

4.2

9 reviews

5
5
4
3
3
0
2
0
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions