100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

Solutions Manual for A First Course in Integral Equations – 2nd Edition (Abdul-Majid Wazwaz, 2015)

Rating
-
Sold
-
Pages
172
Grade
A+
Uploaded on
14-07-2025
Written in
2024/2025

INSTANT DOWNLOAD PDF — This solutions manual for *A First Course in Integral Equations* (2nd Edition, 2015) by Abdul-Majid Wazwaz provides detailed, step-by-step solutions to all major problem sets in the textbook. Topics include Fredholm and Volterra equations, Green’s functions, integral transforms, numerical methods, and applications in engineering and physics. Ideal for advanced undergraduates and graduate students in applied mathematics and engineering. integral equations solutions manual, wazwaz 2nd edition answers, fredholm and volterra problems, green’s function solutions, applied mathematics guide, numerical methods for integral equations, engineering math solutions, wazwaz integral equations pdf, integral transforms exercises, mathematical physics problems solved #IntegralEquations, #WazwazSolutions, #AppliedMathematics, #EngineeringMath, #FredholmEquations, #VolterraEquations, #NumericalMethods, #GreenFunctions, #MathSolutions, #MathTextbookHelp

Show more Read less
Institution
Solution Manual
Course
Solution Manual











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Solution Manual
Course
Solution Manual

Document information

Uploaded on
July 14, 2025
Number of pages
172
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Covers All 8 Chapters




SOLUTIONS MANUAL

,Contents

Preface ix

1 Introductory Concepts 1
1.2 Classification of Linear Integral Equations . . . . . . . . . . 1
1.3 Solution of an Integral Equation . . . . . . . . . . . . . . . 2
1.4 Converting Volterra Equation to an ODE . . . . . . . . . . 4
1.5 Converting IVP to Volterra Equation . . . . . . . . . . . . . 7
1.6 Converting BVP to Fredholm Equation . . . . . . . . . . . 11
1.7 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Fredholm Integral Equations 15
2.2 Adomian Decomposition Method . . . . . . . . . . . . . . . 15
2.3 The Variational Iteration Method . . . . . . . . . . . . . . . 22
2.4 The Direct Computation Method . . . . . . . . . . . . . . . 25
2.5 Successive Approximations Method . . . . . . . . . . . . . . 29
2.6 Successive Substitutions Method . . . . . . . . . . . . . . . 33
2.8 Homogeneous Fredholm Equation . . . . . . . . . . . . . . . 35
2.9 Fredholm Integral Equation of the First Kind . . . . . . . . 39

3 Volterra Integral Equations 41
3.2 Adomian Decomposition Method . . . . . . . . . . . . . . . 41
3.3 The Variational Iteration Method . . . . . . . . . . . . . . . 54
3.4 The Series Solution Method . . . . . . . . . . . . . . . . . . 57
3.5 Converting Volterra Equation to IVP . . . . . . . . . . . . . 63
3.6 Successive Approximations Method . . . . . . . . . . . . . . 67
3.7 Successive Substitutions Method . . . . . . . . . . . . . . . 75
3.9 Volterra Equations of the First Kind . . . . . . . . . . . . . 79

vii

,viii Contents

4 Fredholm Integro-Differential Equations 85
4.3 The Direct Computation Method . . . . . . . . . . . . . . . 85
4.4 The Adomian Decomposition Method . . . . . . . . . . . . 90
4.5 The Variational Iteration Method . . . . . . . . . . . . . . . 94
4.6 Converting to Fredholm Integral Equations . . . . . . . . . 96

5 Volterra Integro-Differential Equations 101
5.3 The Series Solution Method . . . . . . . . . . . . . . . . . . 101
5.4 The Adomian Decomposition Method . . . . . . . . . . . . 103
5.5 The Variational Iteration Method . . . . . . . . . . . . . . . 105
5.6 Converting to Volterra Equations . . . . . . . . . . . . . . . 107
5.7 Converting to Initial Value Problems . . . . . . . . . . . . . 110
5.8 The Volterra Integro-Differential Equations of the First
Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Singular Integral Equations 117
6.2 Abel’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3 Generalized Abel’s Problem . . . . . . . . . . . . . . . . . . 122
6.4 The Weakly Singular Volterra Equations . . . . . . . . . . . 122
6.5 The Weakly Singular Fredholm Equations . . . . . . . . . . 130

7 Nonlinear Fredholm Integral Equations 133
7.2 Nonlinear Fredholm Integral Equations . . . . . . . . . . . . 133
7.2.1 The Direct Computation Method . . . . . . . . . . . 133
7.2.2 The Adomian Decomposition Method . . . . . . . . 141
7.2.3 The Variational Iteration Method . . . . . . . . . . . 148
7.3 Nonlinear Fredholm Integral Equations of the First
Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.4 Weakly-Singular Nonlinear Fredholm Integral Equations . . 153

8 Nonlinear Volterra Integral Equations 157
8.2 Nonlinear Volterra Integral Equations . . . . . . . . . . . . 157
8.2.1 The Series Solution Method . . . . . . . . . . . . . . 157
8.2.2 The Adomian Decomposition Method . . . . . . . . 163
8.2.3 The Variational Iteration Method . . . . . . . . . . . 168
8.3 Nonlinear Volterra Integral Equations of the First Kind . . 170
8.3.1 The Series Solution Method . . . . . . . . . . . . . . 170
8.3.2 Conversion to a Volterra Equation of the Second
Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
8.4 Nonlinear Weakly-Singular Volterra Equation . . . . . . . . 173

, Chapter 1

Introductory Concepts

1.2 Classification of Linear Integral Equations
Exercises 1.2

1. Fredholm, linear, nonhomogeneous
2. Volterra, linear, nonhomogeneous
3. Volterra, nonlinear, nonhomogeneous
4. Fredholm, linear, homogeneous
5. Fredholm, linear, nonhomogeneous
6. Fredholm, nonlinear, nonhomogeneous
7. Fredholm, nonlinear, nonhomogeneous
8. Fredholm, linear, nonhomogeneous
9. Volterra, nonlinear, nonhomogeneous
10. Volterra, linear, nonhomogeneous
11. Volterra integro-differential equation, nonlinear
12. Fredholm integro-differential equation, linear
13. Volterra integro-differential equation, nonlinear
14. Fredholm integro-differential equation, linear
15. Volterra integro-differential equation, linear
Z x
16. u(x) = 1 + 4u(t)dt
0
Z x
17. u(x) = 1 + 3t2 u(t)dt
0
Z x
18. u(x) = 4 + u2 (t)dt
0

1

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
TestBanksStuvia Chamberlain College Of Nursng
View profile
Follow You need to be logged in order to follow users or courses
Sold
2741
Member since
2 year
Number of followers
1199
Documents
1918
Last sold
3 hours ago
TESTBANKS & SOLUTION MANUALS

if in any need of a Test bank and Solution Manual, fell free to Message me or Email donc8246@ gmail . All the best in your Studies

3.9

295 reviews

5
161
4
44
3
31
2
20
1
39

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions