SOLUTION MANUAL
Finite Mathematics & Its Applications
13th Edition by Larry J. Goldstein, Chapters 1 - 12
Complete
, Contents
Chapter 1: Linear Equations and Straight Lines
H H H H H 1–1
Chapter 2: Matrices
H 2–1
Chapter 3: Linear Programming, A Geometric Approach
H H H H H 3–1
Chapter 4: The Simplex Method
H H H 4–1
Chapter 5: Sets and Counting
H H H 5–1
Chapter 6: Probability
H 6–1
Chapter 7: Probability and Statistics
H H H 7–1
Chapter 8: Markov Processes
H H 8–1
Chapter 9: The Theory of Games
H H H H 9–1
Chapter 10: The Mathematics of Finance
H H H H 10–1
Chapter 11: Logic
H 11–1
Chapter 12: Difference Equations and Mathematical Models
H H H H H 12–1
, Chapter 1 H
ExercisesH1.1 5
6.H LeftH1,HdownH
2
1. RightH2,HupH3 y
y
(2,H3
) x
x
(–1, – 2H
H
5
)H
7.H LeftH20,HupH40
2. LeftH1,HupH4 y
y
(–20,H40)
(–1,H4)
x
x
8.H RightH25,HupH30
3.H DownH2 y
y
(25,H30)
x
x
(0,H–2)
9. PointHQHisH2HunitsHtoHtheHleftHandH2HunitsHupHor
4. RightH2
y (—2,H2).
10. PointHPHisH3HunitsHtoHtheHrightHandH2HunitsHdownHor
(3,—2).
x
(2,H0 1H
) 11. —2(1)H+H (3)H=H—2H+1H=H—1soH yesH theH pointH is
3
onHtheHline.
5. LeftH2,HupH1 1H
y 12. —2(2)H+H (6)H=H—1HisH false,H soH noH theH pointH isH not
3
onHtheHline
(–2,H1)
x
CopyrightH©H2023HPearsonHEducation,HInc 1-1
.
, ChapterH1:HLinearHEquationsHandHStraightHLine ISM:HFiniteHMat
s h
1H 24.H 0H=H5
13 —2xH+H yH =H—1H SubstituteH theH xH andH y noHsolution
3
. x-
coordinatesHofHtheHpointHintoHtheHequation:
f 1H hıH f h intercept:HnoneH
' ,H3 →H—2 ' 1 ı +H1H(3)H=H—1H→H—1+1H=H—1H is WhenHxH=H0,HyH=H
y' ı 'H ı
5Hy-
intercept:H(0,H5)
2HHH J yH2J 3
aHfalseHstatement.HSoHnoHtheHpointHisHnotHon 25.HWhenHyH=H0,HxH=H7
HtheHline. Hx-
f 1h f1h intercept:H(7,H0)H0
14 —2 ' ı + ' ı (—1)H=H—1H isHtrueHsoHyesHtheHpointHis H=H7
.
noHsolution
'y3 ıJHHH'y3 ıJ y-intercept:Hnone
onHtheHline. 26.H 0H=H–8x
15.H mH=H5,HbH=H8 xH=H0
x-intercept:H(0,H0)
16.H mH=H–2HandHbH=H–6 yH=H–8(0)
yH=H0
17.H yH=H0xH+H3;HmH=H0,HbH=H y-intercept:H(0,H0)
3
2H 2H 1H
yH=H xH+H0;H mH=H ,H bH=H0 27 0H=H xH–H1
18 3
3 3 .
. xH=H3
19.H 14xH+H7HyH=H21 x-intercept:H(3,H0)
1H
7HyH=H—14xH+H21 yH =H (0)H–H1
3
yH =H—2xH+H3
yH=H–1
y-intercept:H(0,H–1)
20 xH—HyH=H3 y
. —yH=H—xH+H3
yH=HxH—H3
(3,H0) x
21.HHH 3xH=H5
5 (0,H–1)
xH=H
3
1 2
28. WhenHxH=H0,HyH=H0.
22 – xH+ yH =H10
. 2 3 WhenHxH=H1,HyH=H2.
2H 1H y
yH =H xH+10
3 2
3H
yH =H xH+15 (1,H2)
4 x
(0,H0)
23. 0H=H—4xH+H8
4xH =H8
xH=H2
x-intercept:H(2,H0)
yH=H–4(0)H+H8
1-2 CopyrightH©H2023HPearsonHEducation,HIn
c.
Finite Mathematics & Its Applications
13th Edition by Larry J. Goldstein, Chapters 1 - 12
Complete
, Contents
Chapter 1: Linear Equations and Straight Lines
H H H H H 1–1
Chapter 2: Matrices
H 2–1
Chapter 3: Linear Programming, A Geometric Approach
H H H H H 3–1
Chapter 4: The Simplex Method
H H H 4–1
Chapter 5: Sets and Counting
H H H 5–1
Chapter 6: Probability
H 6–1
Chapter 7: Probability and Statistics
H H H 7–1
Chapter 8: Markov Processes
H H 8–1
Chapter 9: The Theory of Games
H H H H 9–1
Chapter 10: The Mathematics of Finance
H H H H 10–1
Chapter 11: Logic
H 11–1
Chapter 12: Difference Equations and Mathematical Models
H H H H H 12–1
, Chapter 1 H
ExercisesH1.1 5
6.H LeftH1,HdownH
2
1. RightH2,HupH3 y
y
(2,H3
) x
x
(–1, – 2H
H
5
)H
7.H LeftH20,HupH40
2. LeftH1,HupH4 y
y
(–20,H40)
(–1,H4)
x
x
8.H RightH25,HupH30
3.H DownH2 y
y
(25,H30)
x
x
(0,H–2)
9. PointHQHisH2HunitsHtoHtheHleftHandH2HunitsHupHor
4. RightH2
y (—2,H2).
10. PointHPHisH3HunitsHtoHtheHrightHandH2HunitsHdownHor
(3,—2).
x
(2,H0 1H
) 11. —2(1)H+H (3)H=H—2H+1H=H—1soH yesH theH pointH is
3
onHtheHline.
5. LeftH2,HupH1 1H
y 12. —2(2)H+H (6)H=H—1HisH false,H soH noH theH pointH isH not
3
onHtheHline
(–2,H1)
x
CopyrightH©H2023HPearsonHEducation,HInc 1-1
.
, ChapterH1:HLinearHEquationsHandHStraightHLine ISM:HFiniteHMat
s h
1H 24.H 0H=H5
13 —2xH+H yH =H—1H SubstituteH theH xH andH y noHsolution
3
. x-
coordinatesHofHtheHpointHintoHtheHequation:
f 1H hıH f h intercept:HnoneH
' ,H3 →H—2 ' 1 ı +H1H(3)H=H—1H→H—1+1H=H—1H is WhenHxH=H0,HyH=H
y' ı 'H ı
5Hy-
intercept:H(0,H5)
2HHH J yH2J 3
aHfalseHstatement.HSoHnoHtheHpointHisHnotHon 25.HWhenHyH=H0,HxH=H7
HtheHline. Hx-
f 1h f1h intercept:H(7,H0)H0
14 —2 ' ı + ' ı (—1)H=H—1H isHtrueHsoHyesHtheHpointHis H=H7
.
noHsolution
'y3 ıJHHH'y3 ıJ y-intercept:Hnone
onHtheHline. 26.H 0H=H–8x
15.H mH=H5,HbH=H8 xH=H0
x-intercept:H(0,H0)
16.H mH=H–2HandHbH=H–6 yH=H–8(0)
yH=H0
17.H yH=H0xH+H3;HmH=H0,HbH=H y-intercept:H(0,H0)
3
2H 2H 1H
yH=H xH+H0;H mH=H ,H bH=H0 27 0H=H xH–H1
18 3
3 3 .
. xH=H3
19.H 14xH+H7HyH=H21 x-intercept:H(3,H0)
1H
7HyH=H—14xH+H21 yH =H (0)H–H1
3
yH =H—2xH+H3
yH=H–1
y-intercept:H(0,H–1)
20 xH—HyH=H3 y
. —yH=H—xH+H3
yH=HxH—H3
(3,H0) x
21.HHH 3xH=H5
5 (0,H–1)
xH=H
3
1 2
28. WhenHxH=H0,HyH=H0.
22 – xH+ yH =H10
. 2 3 WhenHxH=H1,HyH=H2.
2H 1H y
yH =H xH+10
3 2
3H
yH =H xH+15 (1,H2)
4 x
(0,H0)
23. 0H=H—4xH+H8
4xH =H8
xH=H2
x-intercept:H(2,H0)
yH=H–4(0)H+H8
1-2 CopyrightH©H2023HPearsonHEducation,HIn
c.