with Verified Answers | 100% Correct| Latest
2025/2026 Update - Georgia Institute of
Technology.
CAM = Class Activation Mapping
i,- i,- use Global Average Pooling i,- i,- i,-i,- i,- i,- i,- i,- i,-
layer as final layer to average the activations of each feature map
i,- i,- i,- i,- i,- i,- i,- i,- i,- i,- i,- i,-
and run through softmax loss layer to highlight the important
i,- i,- i,- i,- i,- i,- i,- i,- i,- i,-
regions of the image by projecting back the weights of the
i,- i,- i,- i,- i,- i,- i,- i,- i,- i,- i,-
output on the convolutional feature maps
i,- i,- i,- i,- i,-
Grad-CAM more versatile version of CAM that can produce
i,-i,- i,- i,- i,- i,- i,- i,- i,- i,- i,-
visual explanations for any arbitrary CNN, even if the network
i,- i,- i,- i,- i,- i,- i,- i,- i,- i,-
contains a stack of fully connected layers tooi,- i,- i,- i,- i,- i,- i,-
let the gradients of any target concept score flow into the final
i,- i,- i,- i,- i,- i,- i,- i,- i,- i,- i,- i,-
convolutional layer; then compute an importance score based on i,- i,- i,- i,- i,- i,- i,- i,- i,-
the gradients and produce a coarse localization map highlighting
i,- i,- i,- i,- i,- i,- i,- i,- i,-
the important regions in the image for predicting that concept
i,- i,- i,- i,- i,- i,- i,- i,- i,-
What regions of image is model looking at to make prediction?
i,- i,- i,- i,- i,- i,- i,- i,- i,- i,-
Which individual regions have highest class activation as you
i,- i,- i,- i,- i,- i,- i,- i,- i,-
extract layer from CNN? Direction/magnitude of gradients to
i,- i,- i,- i,- i,- i,- i,- i,-
determine which gradients are causing the most updates to the
i,- i,- i,- i,- i,- i,- i,- i,- i,- i,-
NN
Objective: inspective given layer of CNN and correlate to output
i,- i,- i,- i,- i,- i,- i,- i,- i,-
, Task specific (if asked what is a dog -> dog pixels are more
i,- i,- i,- i,- i,- i,- i,- i,- i,- i,- i,- i,- i,-
important)
Adversarial examples Inputs formed by applying small but
i,- i,-i,- i,- i,- i,- i,- i,- i,- i,-
intentionally worst-case perturbations to examples from the
i,- i,- i,- i,- i,- i,- i,-
dataset, such that the perturbed input results in the model
i,- i,- i,- i,- i,- i,- i,- i,- i,- i,-
outputting an incorrect answer with high confidence.
i,- i,- i,- i,- i,- i,-
Guided Backprop i,- i,-i,- i,- Layer by layer (deconvolution is similar to
i,- i,- i,- i,- i,- i,- i,-
backprop)
From details to more abstracted representations
i,- i,- i,- i,- i,-
L1 Loss
i,- i,-i,- i,- Sum of Absolute Value of (true - predicted)
i,- i,- i,- i,- i,- i,- i,-
L2 Loss
i,- i,-i,- i,- Sum of Absolute Value of (true - predicted)^2
i,- i,- i,- i,- i,- i,- i,-
Mean Squared Error (MSE)
i,- i,- i,- i,-i,- i,- Average of (true - predicted)^2 i,- i,- i,- i,-
Modeling Error Given a particular NN architecture, the actual
i,- i,-i,- i,- i,- i,- i,- i,- i,- i,- i,-
model that represents the real world may not be in that space.
i,- i,- i,- i,- i,- i,- i,- i,- i,- i,- i,-