100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Game Theory Basics 1st Edition By Bernhard Von St

Rating
5.0
(1)
Sold
-
Pages
68
Grade
A+
Uploaded on
06-03-2025
Written in
2024/2025

SOLUTION MANUAL Game Theory Basics 1st Edition By Bernhard von Stengel. Chapters 1 - 12

Institution
Game Theory Basics 1st Edition By Bernhard Von St
Course
Game Theory Basics 1st Edition By Bernhard Von St











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Game Theory Basics 1st Edition By Bernhard Von St
Course
Game Theory Basics 1st Edition By Bernhard Von St

Document information

Uploaded on
March 6, 2025
Number of pages
68
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

SOLUTION MANUAL
Game Theory Basics 1st Edition
By Bernhard von Stengel. Chapters 1 - 12




1

,TABLE OF CONTENTS s s s




1 - Nim and Combinatorial Games
s s s s s




2 - Congestion Games
s s s




3 - Games in Strategic Form
s s s s s




4 - Game Trees with Perfect Information
s s s s s s




5 - Expected Utility
s s s




6 - Mixed Equilibrium
s s s




7 - Brouwer’s Fixed-Point Theorem
s s s s




8 - Zero-Sum Games
s s s




9 - Geometry of Equilibria in Bimatrix Games
s s s s s s s




10 - Game Trees with Imperfect Information
s s s s s s




11 - Bargaining
s s




12 - Correlated Equilibrium
s s s




2

,Game Theory Basics
s s




Solutions to Exercises
s s



©s BernhardsvonsStengels2022

SolutionstosExercises1.1

(a) Lets≤sbesdefinedsbys(1.7).s Tosshowsthats≤sisstransitive,sconsidersx,sy,szswithsxs ≤sysandsys≤sz.sIfsxs=systhensxs
≤sz,sandsifsys=szsthensalsosxs≤sz.sSosthesonlyscasesleftsissxs<sysands ys <s z,swhichsimpliessxs <s zsbecauses<sisst
ransitive,sandshencesxs ≤sz.
Clearly,s≤sissreflexivesbecausesxs=sxsandsthereforesxs ≤sx.
Tosshowsthatsssssis≤santisymmetric,sconsidersxsandsyswithsxsssssysandsysssssx.sIf≤sweshadsxs≠sy≤
sthensxs<sysandsys

<sx,sandsbystransitivitysxs<sxswhichscontradictss(1.38).sHencesxs =s y,sassrequired.s Thissshowssthats≤siss
aspartialsorder.
Finally,swesshows(1.6),ssosweshavestosshowsthatsxs<sysimpliessxsssysandsxs≠sysandsvice ≤ sversa.sLetsxs<sy,swh
ichsimpliessxsysbys(1.7).sIfsweshadsxs=systhensxs<sx,scontradicting
≤ s(1.38),ssoswesalsoshavesxs≠sy.s Converse

ly,sxsss ysandsxs≠sysimplysbys(1.7)sxs <s ysors xs =s yswheresthessecondscasesissexcluded,
≤ shences xs <s y,sassrequire

d.
(b) Considersaspartialsordersandsassume ≤ s(1.6)sassasdefinitionsofs<.sTosshowsthats<sisstransitive,ssuppose

sxs<sy,sthatsis,sxsysandsxs≠sy,sandsys<sz,sthatsis,syszsandsys≠sz.sBecausessssisstransitive,sxssssz.sIfsweshadsxs=szsthe
≤ ≤
nsxsssssysands≤
ysssssxsandshencesxs=sys≤bysantisymmetrysofssss,swhichscontradicts
≤ s xs ≠s y,ssosweshaves xssss zs ands xs

≠s z,sthatsis,sxs <s zsbys(1.6),sassrequired.
≤ ≤
Also,s<sissirreflexive,sbecausesxs<sxswouldsbysdefinitionsmeansxsssxsandsxs≠sx,sbut≤stheslattersissnotstrue.
Finally,swesshows(1.7),ssosweshavestosshowsthatsxs ≤sysimpliessxs<sysorsxs=sysandsvicesversa,sgivensthats<s
issdefinedsbys(1.6).sLetsxs≤sy.sThensifsxs=sy,swesaresdone,sotherwisesxs≠sysandsthensbysdefinitionsxs<sy.s
Hence,sxs≤sysimpliessxs<sysorsxs=sy.sConversely,ssupposesxs <s ysorsxs=sy.s Ifsxs <s ysthensxs ≤sysbys(1.6),san
dsifsxs=systhensxs ≤sysbecauses≤sissreflexive.s Thisscompletessthesproof.

SolutionstosExercises1.2

(a) Ins analysings thes gamess ofs threes Nims heapss wheres ones heaps hass sizes one,s wes firsts looksatssomesexampl
es,sandsthensusesmathematicalsinductionstosproveswhatswesconjecturestosbestheslosingspositions.sAslosin
gspositionsissoneswhereseverysmovesisstosaswinningsposition,sbecausesthensthesopponentswillswin.s T
hespointsofsthissexercisesisstosformulatesasprecisesstatementstosbesproved,sandsthenstosprovesit.
First,sifstheresaresonlystwosheapssrecallsthatstheysareslosingsifsandsonlysifsthesheapssaresofsequalssize.s
Ifstheysaresofsunequalssize,sthenstheswinningsmovesisstosreducestheslargersheapssosthatsbothsheapssh
avesequalssize.




3

, Considersthreesheapssofssizess1,sm,sn,swheres1sssssmsssssn.sWe
≤sobserve
≤ sthesfollowing:s1,s1,smsisswinning,s
bysmovingstos1,s1,s0.sSimilarly,s1,sm,smsisswinning,sbysmovingstos0,sm,sm.sNext,s1,s2,s3sisslosings(obser
vedsearliersinstheslecture),sandshences1,s2,snsforsns4sisswinning.s1,s3,snsisswinningsforsanysns3sbysmovi
ngstos1,s3,s2.sFors1,s4,s5,sreducingsanysheapsproducessaswinningsposition,ssosthississlosing.
≥ ≥
Thesgeneralspatternsforstheslosingspositionssthussseemsstosbe:s1,sm,sms1,sforsevensnumbers + sm.s Thiss

includessalsosthescasesms=s0,swhichswescanstakesassthesbasescasesforsansinduction.s Wesnowsproceedst
osprovesthissformally.
Firstswesshowsthatsifsthespositionssofsthesforms1,sm,snswithsmssssssnsareslosingswhen ≤ smsissevensandsns=s
ms1,sthensthesesaresthesonly + slosingspositionssbecausesanysotherspositions1,sm,sns withsms s ns isswinnin

g.s Namely,sifsms =sns thensaswinning ≤ smovesfroms1,sm,smsissto s0,sm,sm,ssoswescan sassumesms<sn.s Ifsmsissevens

thensns>sms s 1s(otherwisesweswouldsbesinsthespositions1,sm,sms s 1)sandssostheswinningsmovesisstos1,sm,s
+
ms s 1.sIfsmsissoddsthenstheswinningsmovesisstos1,sm,sms1,sthessamesasspositions1,sms1,sms(thisswoulds alsos b
+ +
es as winnings moves froms 1,sm,sms sos theres thes winnings moves iss nots unique).
– −
Second,swesshowsthatsanysmovesfroms1,sm,sms+s1swithsevensmsisstosaswinningsposition,susingsassinductiv
eshypothesissthats1,smJ,smJs+s1sforsevensmJsandsmJs<smsissaslosingsposition.sThesmovestos0,sm,sms+s1spro
ducessaswinningspositionswithscounter-
movestos0,sm,sm.sAsmovestos1,smJ,sms+s1sforsmJs<smsisstosaswinningspositionswithsthescounter-
movestos1,smJ,smJs+s1sifsmJsissevensandstos1,smJ,smJs−s1sifsmJsissodd.sAsmovestos1,sm,smsisstosaswinningsposi
tionswithscounter-
movestos0,sm,sm.sAsmovestos1,sm,smJswiths mJs<s msissalsostosaswinningspositionswithsthescounter-
movestos1,smJs−s1,smJsifs mJsissodd,sandstos1,smJs 1,smJsifsmJsissevens(inswhichscasesmJs 1s<smsbecausesmsisseve
n).sThissconcludessthesinductionsproof.
+ +
ThissresultsissinsagreementswithsthestheoremsonsNimsheapssizessrepresentedsasssumssofspowerssofs2:s 1s
0
s ms s nsisslosingsifsandsonlysif,sexceptsfors2 ,sthespowerssofs2smakingsupsmsandsnscomesinspairs.sSosthesesmu
∗s +∗ +∗
stsbesthessamespowerssofs2,sexceptsfors1s=s20,swhichsoccurssinsonlysmsorsn,swheresweshavesassumedsthatsns
isstheslargersnumber,ssos1sappearssins thes representations ofs n:s Wes haves ms =s 2assssss2bssssss2c
fors as >s bs >s cs >ssssssss 1,ssos ms iss e
a s s s bs s s c + + +s ·s ·s · ·s ·s·s ≥
ven,s and,s withs thes sames a,sb,sc,s.s.s.,s ns =s 2 2 2 1s =s mssss 1.s Then
+ + +s ·s ·s ·s + +
∗1s ssssss
+s ∗msssss n+ssssss
s∗
0.s≡The
s∗
s followings iss ans examples usings thes bits representations where

ms =s12s(whichsdeterminessthesbitspatterns1100,swhichsofscoursesdependssonsm):

1 = 0001
12 = 1100
13 = 1101
Nim-sum 0 = 0000

(b) Wesuses(a).sClearly,s1,s2,s3sisslosingsassshownsins(1.2),sandsbecausesthesNim-
sumsofsthesbinarysrepresentationss01,s10,s11siss00.sExamplessshowsthatsanysotherspositionsisswinni
ng.sThesthreesnumberssaresn,sns 1,sns s 2.sIfsnsis+
sevensthensreducingsthesheapsofssizesns2stos1screatessthes
+
positionsn,sns 1,s1swhichsisslosingsassshownsins(a).sIfsnsissodd,sthensns 1sissevensandsnsss2s=s nsss1sss1ssosb
+ +
ysthessamesargument,saswinningsmovesisstosreducesthesNimsheapsofssizesnstos1s(whichsonlysworkssifs
+ + (s +s )s+
ns >s1).




4

Reviews from verified buyers

Showing all reviews
7 months ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
ProfessorsAcademy stuvia
View profile
Follow You need to be logged in order to follow users or courses
Sold
25
Member since
10 months
Number of followers
7
Documents
661
Last sold
3 weeks ago
EXAMSHUB!!!!

TOP RATED EXAMS &amp; STUDY RESOURCES SHOP We offer Best Quality Exams, Testbanks, Solution manuals &amp; Other study materials which are A+ GRADED ON Pre-order &amp; order Basis......Buy without doubt!!!!!

5.0

232 reviews

5
232
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions