Solutions Manual
Chapter 1
Problems 1-1 through 1-6 are for student research. No standard solutions are provided.
1-7 From Fig. 1-2, cost of grinding to 0.0005 in is 270%. Cost of turning to 0.003 in is
60%.
Relative cost of grinding vs. turning = 270/60 = 4.5 times Ans.
1-8 C A = C B,
10 + 0.8 P = 60 + 0.8 P 0.005 P 2
P 2 = 50/0.005 P = 100 parts Ans.
1-9 Max. load = 1.10 P
Min. area = (0.95)2A
Min. strength = 0.85 S
To offset the absolute uncertainties, the design factor, from Eq. (1-1) should be
1.10
nd 1.43 Ans.
0.85 0.95
2
1-10 (a) X1 + X2:
x1 x2 X1 e1 X 2 e2
error e x1 x2 X1 X 2
e1 e2 Ans.
(b) X1 X2:
x1 x2 X1 e1 X 2 e2
e x1 x2 X1 X 2 e1 e2 Ans.
(c) X1 X2:
x1x2 X1 e1 X 2 e2
e x1 x2 X1 X 2 X1e2 X 2e1 e1e2
X e X e X X e1 e2 Ans.
1 2
1 2 2 1
X X
1 2
Chapter 1 Solutions, Page 1/12
Downloaded by: akramrq12 | Want to earn $1.236
Distribution of this document is illegal extra per year?
, (d) X1/X2:
x1 X1 e1 X1 1 e1 X1
x X e X 1 e X
2 2 2 2 2 2
1
e e2 1 e X e e e e
2 1
1
then
1 1
1 1
1 2
1 1
2
X 2 X 2 1 e2 2
X X 1 X 2 X 1 X 2
x1 X1
Thus, e X1 e1 e2 Ans.
x X X
2 2 2
X 1 X 2
1-11 (a) x1 = 7 = 2.645 751 311 1
X1 = 2.64 (3 correct digits)
x2 = 8 = 2.828 427 124 7
X2 = 2.82 (3 correct digits)
x1 + x2 = 5.474 178 435 8
e1 = x1 X1 = 0.005 751 311 1
e2 = x2 X2 = 0.008 427 124 7
e = e1 + e2 = 0.014 178 435 8
Sum = x1 + x2 = X1 + X2 + e
= 2.64 + 2.82 + 0.014 178 435 8 = 5.474 178 435 8 Checks
(b) X1 = 2.65, X2 = 2.83 (3 digit significant numbers)
e1 = x1 X1 = 0.004 248 688 9
e2 = x2 X2 = 0.001 572 875 3
e = e1 + e2 = 0.005 821 564 2
Sum = x1 + x2 = X1 + X2 + e
= 2.65 +2.83 0.001 572 875 3 = 5.474 178 435 8 Checks
S 321000 25103
1-12
d 1.006 in Ans.
nd d 3
2.5
Table A-17: d = 1 14 in Ans.
n
S 25103
Factor of safety: 4.79 Ans.
321000
1.25
3
Chapter 1 Solutions, Page 2/12
Downloaded by: akramrq12 | Want to earn $1.236
Distribution of this document is illegal extra per year?
, 1-13 (a)
x f fx f x2
60 2 120 7200
70 1 70 4900
80 3 240 19200
90 5 450 40500
100 8 800 80000
110 12 1320 145200
120 6 720 86400
130 10 1300 169000
140 8 1120 156800
150 5 750 112500
160 2 320 51200
170 3 510 86700
180 2 360 64800
190 1 190 36100
200 0 0 0
210 1 210 44100
69 8480 1 104 600
k
1 8480
N
fx
Eq. (1-6) x i i 122.9 kcycles
i 1 69
Eq. (1-7)
k
sx
fx 2
i i N x2 1104 600 69(122.9)2 1/ 2
i 1 30.3 kcycles Ans.
N 1
69 1
x x x 115 122.9
(b) Eq. (1-5) z115 ˆ x 115s 30.3 0.2607
x x
Interpolating from Table (A-10)
0.2600 0.3974
0.2607 x x = 0.3971
0.2700 0.3936
N(0.2607) = 69 (0.3971) = 27.4 27 Ans.
From the data, the number of instances less than 115 kcycles is
Chapter 1 Solutions, Page 3/12
Downloaded by: akramrq12 | Want to earn $1.236
Distribution of this document is illegal extra per year?
, 2 + 1 + 3 + 5 + 8 + 12 = 31 (the data is not perfectly normal)
1-14
x f fx f x2
174 6 1044 181656
182 9 1638 298116
190 44 8360 1588400
198 67 13266 2626668
206 53 10918 2249108
214 12 2568 549552
222 6 1332 295704
197 39126 7789204
k
1 39 126
N
fx
Eq. (1-6) x i i 198.61 kpsi
i 1 197
k
Eq. (1-7) sx
f x i i
2
N x2 12
7 789 204 197(198.61) 9.68 kpsi Ans.
2
i1
197 1
N 1
1-15 L 122.9 kcycles and sL 30.3 kcycles
Eq. (1-5) x x x10 L x10 122.9
z10
ˆ sL 30.3
Thus, x10 = 122.9 + 30.3 z10 = L10
From Table A-10, for 10 percent failure, z10 = 1.282. Thus,
L10 = 122.9 + 30.3(1.282) = 84.1 kcycles Ans.
Chapter 1 Solutions, Page 4/12
Downloaded by: akramrq12 | Want to earn $1.236
Distribution of this document is illegal extra per year?