SOLUTIONS MANUAL
LINEAR A LGEBRA
FIFTH EDITION
Complete Chapter Solutions Manual
are included (Ch 1 to 7)
Stephen H. Friedberg
Arnold J. Insel
Lawrence E. Spence
Illinois State University
** Immediate Download
** Swift Response
** All Chapters included
,Contents
1 Vector Spaces 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.4 Linear Combinations and Systems of Linear Equations . . . . . . . . . . . . . . . . . 2
1.5 Linear Dependence and Linear Independence . . . . . . . . . . . . . . . . . . . . . . 2
1.6 Bases and Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Linear Transformations and Matrices 4
2.1 Linear Transformations, Null Spaces, and Ranges . . . . . . . . . . . . . . . . . . . . 4
2.2 The Matrix Representation of a Linear Transformation . . . . . . . . . . . . . . . . 4
2.3 Composition of Linear Transformations and Matrix Multiplication . . . . . . . . . . 5
2.4 Invertibility and Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 The Change of Coordinate Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Dual Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.7 Homogeneous Linear Differential Equations with Constant Coefficients . . . . . . . . 6
3 Elementary Matrix Operations and Systems of Linear Equations 8
3.1 Elementary Matrix Operations and Elementary Matrices . . . . . . . . . . . . . . . 8
3.2 The Rank of a Matrix and Matrix Inverses . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Systems of Linear Equations—Theoretical Aspects . . . . . . . . . . . . . . . . . . . 9
3.4 Systems of Linear Equations—Computational Aspects . . . . . . . . . . . . . . . . . 9
4 Determinants 11
4.1 Determinants of Order 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Determinants of Order n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Properties of Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Summary–Important Facts about Determinants . . . . . . . . . . . . . . . . . . . . 12
4.5 A Characterization of the Determinant . . . . . . . . . . . . . . . . . . . . . . . . . 12
5 Diagonalization 13
5.1 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Diagonalizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Matrix Limits and Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4 Invariant Subspaces and the Cayley-Hamilton Theorem . . . . . . . . . . . . . . . . 15
iii
, Table of Contents
6 Inner Product Spaces 16
6.1 Inner Products and Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 The Gram-Schmidt Orthogonalization Process and Orthogonal Complements . . . . 16
6.3 The Adjoint of a Linear Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.4 Normal and Self-Adjoint Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.5 Unitary and Orthogonal Operators and Their Matrices . . . . . . . . . . . . . . . . 18
6.6 Orthogonal Projections and the Spectral Theorem . . . . . . . . . . . . . . . . . . . 18
6.7 The Singular Value Decomposition and the Pseudoinverse . . . . . . . . . . . . . . . 19
6.8 Bilinear and Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.10 Conditioning and the Rayleigh Quotient . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.11 The Geometry of Orthogonal Operators . . . . . . . . . . . . . . . . . . . . . . . . . 20
7 Canonical Forms 21
7.1 Jordan Canonical Form I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2 Jordan Canonical Form II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.3 The Minimal Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.4 Rational Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
iv