First Course in Abstract Algebra A
8th Edition by John B. Fraleigh
All Chapters Full Complete
, CONTENTS
1. Setsv andv Relations 1
I. Groupsv andv Subgroups
2. Introductionv andv Examples 4
3. Binaryv Operations 7
4. Isomorphicv Binaryv Structures 9
5. Groups 13
6. Subgroups 17
7. Cyclicvv Groups 21
8. Generatorsv andv Cayleyv Digraphs 24
II. Permutations,vCosets,vandvDirectvProducts
9. GroupsvofvPermutations 26
10. Orbits,vCycles,vandvthevAlternatingvGroups
30
11. CosetsvandvthevTheoremv ofvLagrange 34
12. Directv Productsv andv Finitelyv Generatedv Abelianv Groups 37
13. Planev Isometries 42
III. Homomorphismsv andv Factorv Groups
14. Homomorphisms 44
15. Factorv Groups 49
16. Factor-Groupv Computationsv andv Simplev Groups 53
17. GroupvActionvonvavSet 58
18. ApplicationsvofvG-SetsvtovCounting 61
IV. Ringsv andv Fields
19. RingsvandvFields 63
20. Integralv Domains 68
21. Fermat’sv andv Euler’sv Theorems 72
22. Thev Fieldv ofv Quotientsv ofv anv Integralv Domain 74
23. Ringsv ofv Polynomials 76
24. FactorizationvofvPolynomialsvovervavField 79
25. NoncommutativevExamples 85
26. Orderedv Ringsv andv Fields 87
V. Idealsv andv Factorv Rings
27. HomomorphismsvandvFactorvRings 89
28. PrimevandvMaximalvIdeals 94
,29. GröbnervBasesvforvIdeals 99
, VI. Extensionv Fields
30. IntroductionvtovExtensionvFields 103
31. Vectorv Spaces 107
32. Algebraicv Extensions 111
33. GeometricvConstructions 115
34. Finitev Fields 116
VII. AdvancedvGroupvTheory
35. IsomorphismvTheorems 117
36. SeriesvofvGroups 119
37. Sylowv Theorems 122
38. Applicationsv ofv thev Sylowv Theory 124
39. Freev Abelianv Groups 128
40. FreevGroups 130
41. Groupv Presentations 133
VIII. Groupsv inv Topology
42. Simplicialv Complexesv andv Homologyv Groups 136
43. ComputationsvofvHomologyvGroups 138
44. MorevHomologyvComputationsvandvApplications 140
45. HomologicalvAlgebra 144
IX. Factorization
46. Uniquev Factorizationv Domains 148
47. Euclideanv Domains 151
48. Gaussianv Integersv andv Multiplicativev Norms 154
X. Automorphismsv andv Galoisv Theory
49. AutomorphismsvofvFields 159
50. Thev Isomorphismv Extensionv Theorem 164
51. Splittingv Fields 165
52. SeparablevExtensions 167
53. TotallyvInseparablevExtensions 171
54. Galoisv Theory 173
55. IllustrationsvofvGaloisvTheory 176
56. CyclotomicvExtensions 183
57. Insolvabilityv ofv thev Quintic 185
APPENDIXvv Matrixvv Algebra 187
iv