_’- _’- _’- _’- _’- _’-
complete solutions. _’- _’-
Associative Property _’- _’-_’- _’- Changing the grouping of the numbers will not
_’- _’- _’- _’- _’- _’- _’- _’-
change the result
_’- _’-
Identity Property_’- Zero and one preserves identities under addition and
_’-_’- _’- _’- _’- _’- _’- _’- _’- _’- _’-
multiplication respectively _’-
Distributive Property _’- _’-_’- _’- Multiplication distributes over the addition _’- _’- _’- _’-
A(b+c)=ab+ac
Solving equations
_’- Equations are statements formed by placing an equal
_’-_’- _’- _’- _’- _’- _’- _’- _’- _’- _’-
sign between two mathematical expression.
_’- _’- _’- _’- _’-
Terms are separated by + or − signs
_’- _’- _’- _’- _’- _’- _’-
Coefficients # associated with each of those terms is called
_’-_’- _’- _’- _’- _’- _’- _’- _’- _’- _’- _’-
coefficient(12, -3, 1,15, 11, -4, -1, 3 _’- _’- _’- _’- _’- _’-
expression _’-_’- _’- adding 1 or more terms together
_’- _’- _’- _’- _’-
linear equation
_’- _’-_’- _’- equation has =sign. ex of linear eq: 4x+3=11
_’- _’- _’- _’- _’- _’- _’-
, a linear equation is one that is dependent only on constants and a variable
_’- _’- _’- _’- _’- _’- _’- _’- _’- _’- _’- _’- _’- _’-
raised to the first power. For example, y=6x+2y=6x+2 is linear because it has
_’- _’- _’- _’- _’- _’- _’- _’- _’- _’- _’- _’- _’-
no squares, cubes, square roots, sines, etc. Linear equations can always be
_’- _’- _’- _’- _’- _’- _’- _’- _’- _’- _’- _’-
manipulated to take this form: _’- _’- _’- _’-
ax+b=0
Practice identifying the Property
_’- _’- _’- _’-_’- _’- Ex: 19•5=5•19
_’-
Substitution _’-_’- _’- 13•n
13•3
13•3=39 _’-
_’- N=3
Exponents _’-_’- _’- 5(3)= 5•5•5 _’-
Pemdas _’-_’- _’- Parenthesis _’-
Exponents
Multiplication
Division
Addition
Subtraction
Absolute Value _’- _’-_’- The distance from zero on a number line it is always
_’- _’- _’- _’- _’- _’- _’- _’- _’- _’- _’- _’-
positive _’-
|-3|=3 |3|=3 _’-