100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

SOLUTIONS MANUAL for Introduction to Quantum Computing by Ray LaPierre | Chapters 1-26

Rating
-
Sold
-
Pages
87
Grade
A+
Uploaded on
04-09-2023
Written in
2023/2024

SOLUTIONS MANUAL for Introduction to Quantum Computing by Ray LaPierre. ISBN-13 978-6. _TABLE OF CONTENTS_ Chapter 1: Superposition.- Chapter 2: Quantization.- Chapter 3: Spin.- Chapter 4: Qubits.- Chapter 5: Entanglement.- Chapter 6: Quantum Key Distribution.- Chapter 7: Quantum Gates.- Chapter 8: Teleportation.- Chapter 10: Computational Complexity.- Chapter 11: Deutsch Algorithm.- Chapter 12: Grover Algorithm.- Chapter 13: Shor Algorithm.- Chapter 14: Physical Implementation of Single-Qubit Gates.- Chapter 15: Electron Spin Resonance.- Chapter 16: Two-state Dynamics.- Chapter 17: Physical Implementation of Two-qubit Gates.- Chapter 18: DiVincenzo Criteria.- Chapter 19: Nuclear Magnetic Resonance.- Chapter 20: Solid-state Spin Qubits.- Chapter 21: Trapped Ion Quantum Computing.- Chapter 22: Superconducting Qubits.- Chapter 23: Adiabatic Quantum Computing.- Chapter 24: Optical Quantum Computing.- Chapter 25: Quantum Error Correction.- Chapter 26: Topological Quantum Computing.

Show more Read less
Institution
Introduction To Quantum Computing By Ray LaPierre.
Course
Introduction to Quantum Computing by Ray LaPierre.











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Introduction to Quantum Computing by Ray LaPierre.
Course
Introduction to Quantum Computing by Ray LaPierre.

Document information

Uploaded on
September 4, 2023
Number of pages
87
Written in
2023/2024
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

  • isbn 13 978 3030693206

Content preview

, The Solutions Manual for Introduction to Quantum Computing
by Ray LaPierre

Chapter 1


Exercise 1.1. Derive Eq. (1.11): I12  | E1 + E2 |2 = I1 + I2 + 2√I1I2 cos 

E1 = E01 ei(kx−t)
E2 = E02 ei(kx−t+)

E1E2* = (E01ei(kx−t))(E02ei(kx−t+)*

= E01E02e−i , assuming E01 is parallel to E02 (same polarization) so E01E02 = E01E02
E2E1* = (E02ei(kx−t+)(E01ei(kx−t))*

= E01E02e+i, assuming E01 is parallel to E02 (same polarization)
E1E2* + E2E1* = E01E02 (e+i + e−i)

= 2E01E02cos

 2√I1I2cos
| E1 + E2 |2 = (E1 + E2)( E1 + E2)*

 I12 = E1E1* + E2E2* + E1E2* + E2E1*

 I1  I2  2√I1I2cos


 I12 = I1 + I2 + 2√I1I2cos

,Chapter 2

Exercise 2.1. Show that the first two states (two lowest energy levels) of the infinite quantum
well are orthonormal.

2 π
1(x) = √ sin ( x)
L L

2 2π
2 (x) = √ sin ( x)
L L
+∞
∫ 1∗ 2 dx
−∞
2 π
L 2π
= ∫ sin ( x) sin ( x) dx
L 0 L L
4 L π π π
=
∫ sin (L x) sin (L x) cos (L x) dx, using sin(2x)=2sinxcosx
L 0
4 L π π
= ∫ sin2 ( x) cos ( x) dx
L 0 L L
4 sin3 π L
= 3π ( x)|
L 0
4
= [sin3(π) − sin3(0)]

=0


+∞
∫ ∗  dx
1 1
−∞
2 L π π
= ∫ sin ( x) sin ( x) dx
L 0 L L
2 L π
= ∫ sin2 ( x) dx
L 0 L
1 L 2π 2
=

L 0
[1 − cos ( L
x)] dx, using 2sin (x) = 1−cos(2x)
1 L 1 2π L
|
= x − sin ( x)|
L 0 2π L 0

, =1


Similarly,
+∞
∫ 2∗ 2 dx = 1
−∞


+∞
∫ ∗  dx = δ where i, j = {0, 1}
−∞ i j ij

 1(x) and 2(x) are orthonormal.


Exercise 2.2. Prove Eq. (2.49): <A> = |c1|2 a1 + |c2|2 a2 + … + |cn|2 an


 = c11 + c22 + … cnn
+∞
∫ ∗ A
̂  dX
<A> = −∞
+∞
∫−∞ ∗ dX

The numerator is:
+∞
∫ ∗ A
̂  dx
−∞
+∞
=∫ (c ∗ ∗ + c ∗ ∗ + c ∗ ∗ ) A
̂ (c  + c  +. . . c  ) dx
1 1 2 2 n n 1 1 2 2 n n
−∞
+∞
=∫ (c∗∗ + c∗∗ + c∗ ∗ ) (a c  + a c  +. . . a c  ) dx
1 1 2 2 n n 1 1 1 2 2 2 n n n
−∞
= c∗c1a1 + c∗c2a2+. . . c∗ c a
1 2 n n n

= |c1|2a1 + |c2|2a2+. . . |cn|2an

+∞
All other terms in the numerator, like a c∗c ∫ ∗  dx, are zero since  and  are
2 1 2 −∞ 1 2 1 2

orthonormal.


Similarly, the denominator is:
+∞
∫ ∗  dx
−∞

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
AcademiContent Aalborg University
View profile
Follow You need to be logged in order to follow users or courses
Sold
3060
Member since
6 year
Number of followers
2132
Documents
1236
Last sold
1 day ago

4.0

386 reviews

5
203
4
84
3
38
2
17
1
44

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions