100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Complete Solution Manual Probability and Statistics for Computer Scientists 2nd Edition Baron Questions & Answers with rationales

Rating
-
Sold
25
Pages
143
Grade
A+
Uploaded on
21-06-2023
Written in
2022/2023

Probability and Statistics for Computer Scientists 2nd Edition Baron Solutions Manual Complete Solution Manual Probability and Statistics for Computer Scientists 2nd Edition Baron Questions & Answers with rationales PDF File All Pages All Chapters Grade A+

Show more Read less
Institution
Probability
Course
Probability











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Probability
Course
Probability

Document information

Uploaded on
June 21, 2023
Number of pages
143
Written in
2022/2023
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

  • probability

Content preview

Probability and Statistics for Computer Scientists 2nd Edition Baron Solutions Manual Table of Contents Chapter 2 solutions 3 Chapter 3 solutions 14 Chapter 4 solutions 27 Chapter 5 solutions 40 Chapter 6 solutions 46 Chapter 7 solutions 54 Chapter 8 solutions 66 Chapter 9 solutions 71 Chapter 10 solutions 84 Chapter 11 solutions 110 Appendix: Matlab codes for exercises -projects 131 CHAPTER 2 3 Chapter 2 2.1 An outcome is the chosen pair of chips. The sample space in this problem consists of 15 pairs: AB, AC, AD, AE, AF, BC, BD, BE, BF, CD, CE, CF, DE, DF, EF (or 30 pairs if the order of chips in each pair matters, i.e., AB and BA are different pairs). All the outcomes are equally likely because two chips are chosen at random. One outcome is ‘favorable’, when both chips in a pair are defective (two such pairs if the order matters). Thus, P (both chips are defective) = number of favorable outcomes = total number of outcomes 1/15 } } 2.2 Denote the events: We have: M = { problems with a motherboard } H = { problems with a hard drive } Hence, P {M } = 0.4, P {H} = 0.3, and P {M ∩ H} = 0.15. and P {M ∪ H} = P {M } + P {H} − P {M ∩ H} = 0.4 + 0.3 − 0.15 = 0.55, P {fully functioning MB and HD} = 1 − P {M ∪ H} = 2.3 Denote the events, Then I = {the virus enters through the internet } E = {the virus enters through the e-mail} P {E¯ ∩ I¯} = 1 − P {E ∪ I} = 1 − (P {E} + P {I} − P {E ∩ I}) = 1 − (.3 + .4 − .15) = It may help to draw a Venn diagram. 2.4 Denote the events, C = { knows C/C++ } , F = { knows Fortran } . Then (a) P F¯ = 1 − P {F } = 1 − 0.6 = (b) P F¯ ∩ C¯ = 1 − P {F ∪ C} = 1 − (P {F } + P {C} − P {F ∩ C}) = 1 − (0.7 + 0.6 − 0.5) = 1 − 0.8 = 0.2 (c) P {C\F } = P {C} − P {F ∩ C} = 0.7 − 0.5 = 0.2 0.4 0.45 0.45 } } } } ∩ ∩ } { } { } { } } } } { ∩ } 4 INSTRUCTOR ’S SOLUTION MANUAL (d) P {F \C} = P {F } − P {F ∩ C} = 0.6 − 0.5 = P C F 0.5 (e) P {C | F } = = = P {F } 0.6 (f) P {F | C} = P {C ∩ F } = 0.5 = P {C} 0.7 2.5 Denote the events: Then D1 = {first test discovers the error } D2 = {second test discovers the error} D3 = {third test discovers the error} P { at least one discovers } = P {D1 ∪ D2 ∪ D3} = 1 − P D¯1 ∩ D¯2 ∩ D¯3 = 1 − (1 − 0.2)(1 − 0.3)(1 − 0.5) = 1 − 0.28 = We used the complement rule and independence. 2.6 Let A = {arrive on time}, W = {good weather }. We have P {A | W } = 0.8, P A | W¯ = 0.3, P {W } = 0.6 By the Law of Total Probability, P {A} = P {A | W } P {W } + P A | W¯ P W¯ = (0.8)(0 .6) + (0.3)(0 .4) = 0.60 2.7 Organize the data. Let D = detected , I = via internet , E = via e-mail = I. Notice that the question about detection already assumes that the spyware has entered the system. This is the sample space, and this is why P {I} + P {E} = 1. We have P {I} = 0.7, P {E} = 0.3, P {D | I} = 0.6, P {D | E} = 0.8. By the Law of Total Probability, P {D} = (0.6)(0 .7) + (0.8)(0 .3) = 2.8 Let A1 = {1st device fails}, A2 = {2nd device fails}, A3 = {3rd device fails}. P { on time } = P { all function } = P A1 A2 A3 = P A1 P A2 P A3 (independence) = (1 − 0.01)(1 − 0.02)(1 − 0.02) (complement rule) = 0.9508 0.66 0.72 0.7143 0.8333 0.1 0.1792 } } } } } } } } } } } } CHAPTER 2 5 2.9 P {at least one fails} = 1 − P {all work} = 1 − (.96)( .95)( .90) = . 2.10 P {A ∪ B ∪ C} = 1 − P A¯ ∩ B¯ ∩ C¯ = 1 − P A¯ P B¯ P C¯ = 1 − (1 − 0.4)(1 − 0.5)(1 − 0.2) = 0.76 2.11 (a) P {at least one test finds the error} = 1 − P {all tests fail to find the error} = 1 − (1 − 0.1)(1 − 0.2)(1 − 0.3)(1 − 0.4)(1 − 0.5) = 1 − (0.9)(0 .8)(0 .7)(0 .6)(0 .5) = (b) The difference between events in (a) and (b) is the probability that exactly one test finds an error. This probability equals P {exactly one test finds the error} = P {test 1 find the error, the others don’t find} +P {test 2 find the error, the others don’t find} + . . . = (0.1)(1 − 0.2)(1 − 0.3)(1 − 0.4)(1 − 0.5) +(1 − 0.1)(0.2)(1 − 0.3)(1 − 0.4)(1 − 0.5) + . . . = (0.1)(0 .8)(0 .7)(0 .6)(0 .5) + (0.9)(0 .2)(0 .7)(0 .6)(0 .5) +(0.9)(0 .8)(0 .3)(0 .6)(0 .5) + (0.9)(0 .8)(0 .7)(0 .4)(0 .5) +(0.9)(0 .8)(0 .7)(0 .6)(0 .5) = 0.3714 . Then P {at least two tests find the error} = P {at least one test finds the error} −P {exactly one test finds the error} = 0.8488 − 0.3714 = (c) P {all tests find the error} = (0.1)(0 .2)(0 .3)(0 .4)(0 .5) = 2.12 Let Aj = { dog j detects the explosives }. P {at least one dog detects } = 1 − P {all four dogs don’t detect } = 1 − P A¯1 P A¯2 P A¯3 P A¯4 = 1 − (1 − 0.6)4 = 0.9744 2.13 Let Aj be the event {Team j detects a problem }. Then P {at least one team detects } = 1 − P {no team detects } = 1 − P A¯1 ∩ A¯2 ∩ A¯3 = 1 − P A¯1 P A¯2 P A¯3 = 1 − (1 − 0.8)(1 − 0.8)(1 − 0.8) = 0.992 . 2.14 (a) The total number of possible passwords is P (26, 6) = (26)(25)(24)(23)(22)(21) = 165, 765, 600 because there are 26 letters in the alphabet, they should be all different in the 0.0012 0.4774 0.8488

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
gradexam Chamberlain College Nursing
View profile
Follow You need to be logged in order to follow users or courses
Sold
4924
Member since
3 year
Number of followers
3389
Documents
4041
Last sold
1 day ago
Learning is hard, but with us it will be easier. You have made the right choice!

Grade Exam specializes in providing study guides that include exams, tests, past work, and quiz questions. We work on every aspect and take into account your wishes every day!

4.1

670 reviews

5
387
4
123
3
77
2
17
1
66

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions