SOLUTIONS MANUAL
GAS DYNAMICS
THIRD EDITION
James E. A. John, Ph.D.
President
Kettering University
Flint, Michigan
Theo G. Keith, Jr., Ph.D.
Distinguished University Professor
Department of Mechanical, Industrial, and Manufacturing Engineering
The University of Toledo
Toledo, Ohio
This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their
courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web)
will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available
to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to
abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on
these materials.
Upper Saddle River, New Jersey 07458
, Table of Contents
Chapter 1 Basic Equations of Compressible Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Chapter 2 Wave Propagation in Compressible Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Chapter 3 Isentropic Flow of a Perfect Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Chapter 4 Stationary Normal Shock Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Chapter 5 Moving Normal Shock Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
Chapter 6 Oblique Shock Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
Chapter 7 Prandtl–Meyer Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
Chapter 8 Applications Involving Shocks and Expansion Fans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
Chapter 9 Flow with Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169
Chapter 10 Flow with Heat Addition or Heat Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207
Chapter 11 Equations of Motion for Multidimensional Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236
Chapter 12 Exact Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250
Chapter 13 Linearized Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272
Chapter 14 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290
Chapter 15 Measurements in Compressible Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339
This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their
courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web)
will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available
to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to
abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on
these materials.
, Chapter One
BASIC EQUATIONS
OF COMPRESSIBLE FLOW
Problem 1. – Air is stored in a pressurized tank at a pressure of 120 kPa (gage) and a temperature
of 27°C. The tank volume is 1 m3. Atmospheric pressure is 101 kPa and the local acceleration
of gravity is 9.81 m/s2. (a) Determine the density and weight of the air in the tank, and (b)
determine the density and weight of the air if the tank was located on the Moon where the
acceleration of gravity is one sixth that on the Earth.
Pabs = Pgage + Patm = 120 + 101 = 221 kpa
Air
T = 27 + 273 = 300°C
∀ = 1m3
g = 9.81 m / s 2 R = 0.287 kJ / kg ⋅ K
P 221 kg
a) ρ= = = 2.5668
RT (0.287)(300) m3
W = mg = ρ ∀g = (2.5668)(1)(9.81) = 25.1801N
kg
b) ρ moon = ρ earth = 2.5668
m3
g 1
Wmoon = moon Wearth = Wearth = 4.1967 N
g earth 6
Problem 2. – (a) Show that p/ρ has units of velocity squared. (b) Show that p/ρ has the same
units as h (kJ/kg). (c) Determine the units conversion factor that must be applied to kinetic
energy, V2/2, (m2/s2) in order to add this term to specific enthalpy h (kJ/kg).
1