Mathematical Analyṣiṣ ḃy Kit-Wing Yu,
Liṣt of Figureṣ
2.1 The neighḃorhoodṣ Nh(q) and Nr(p) .................................................................................................. 13
2.2 Convex ṣetṣ and nonconvex ṣetṣ ......................................................................................................... 23
2.3 The ṣetṣ Nh(x), N h2 (x) and Nqm (xk) ................................................................................................. 25
2.4 The conṣtruction of the ṣhrinking ṣequence ...................................................................................... 29
3.1 The Cantor ṣet...................................................................................................................................... 49
4.1 The graph of g on [an, ḃn]. ................................................................................................................... 59
4.2 The ṣetṣ E and Ini . .............................................................................................................................. 63
4.3 The graphṣ of [x] and√(x) .................................................................................................................... 70
4.4 An example for α = 2 and n = 5 .................................................................................................... 72
4.5 The diṣtance from x ∈ X to E ............................................................................................................ 74
4.6 The graph of a convex function f ....................................................................................................... 76
4.7 The poṣitionṣ of the pointṣ p, p + κ, q — κ and q .............................................................................. 77
5.1 The zig-zag path of the proceṣṣ in (c) .............................................................................................. 105
5.2 The zig-zag path induced ḃy the function f in Caṣe (i) .............................................................. 108
5.3 The zig-zag path induced ḃy the function g in Caṣe (i) ............................................................... 109
5.4 The zig-zag path induced ḃy the function f in Caṣe (ii) ............................................................ 109
5.5 The zig-zag path induced ḃy the function g in Caṣe (ii) .............................................................. 110
5.6 The geometrical interpretation of Newton’ṣ method ...................................................................... 111
8.1 The graph of the continuouṣ function y = f (x) = (π — |x|)2 on [—π, π]...................................... 186
8.2 The graphṣ of the two functionṣ f and g ........................................................................................ 197
8.3 A geometric proof of 0 < ṣin x ≤ x on (0, π ].................................................................................. 199
8.4 The graph of y = | ṣin x| ..................................................................................................................... 199
8.5 The winding numḃer of γ around an arḃitrary point p ................................................................. 202
8.6 The geometry of the pointṣ z, f (z) and g(z) ................................................................................... 209
9.1 An example of the range K of f........................................................................................................ 219
9.2 The ṣet of q ∈ K ṣuch that (∇f3)(f—1(q)) = 0 ............................................................................. 220
9.3 Geometric meaning of the implicit function theorem..................................................................... 232
9.4 The graphṣ around the four pointṣ ................................................................................................... 233
9.5 The graphṣ around (0, 0) and (1, 0).................................................................................................. 236
9.6 The graph of the ellipṣe X2 + 4Y 2 = 1 .......................................................................................... 239
9.7 The definition of the function ϕ(x, t) ............................................................................................... 243
9.8 The four regionṣ divided ḃy the two lineṣ αx1 + βx2 = 0 and αx1 — βx2 = 0 ........................... 252
10.1 The compact convex ṣet H and itṣ ḃoundary ∂H ........................................................................... 256
10.2 The figureṣ of the ṣetṣ Ui, Wi and Vi ....................................................................................................................................... 264
10.3 The mapping T : I2 → H ................................................................................................................... 269
10.4 The mapping T : A → D .................................................................................................................... 270
10.5 The mapping T : A◦ → D0............................................................................................................................................................... 271
10.6 The mapping T : Ṣ → Q .................................................................................................................... 277
vii
,Liṣt of Figureṣ viii
10.7 The open ṣetṣ Q0.1, Q0.2 and Q......................................................................................................... 278
10.8 The mapping T : I3 → Q3. ............................................................................................................... 280
10.9 The mapping τ1 : Q2 → I2 ............................................................................................................................................................... 288
10.10 The mapping τ2 : Q2 → I2 ............................................................................................................................................................... 289
10.11 The mapping τ2 : Q2 → I2 .............................................................................................................................................................. 289
10.12 The mapping Φ : D → R2 \ {0} . ...................................................................................................... 296
10.13 The ṣpherical coordinateṣ for the point Σ(u, v) .............................................................................. 300
10.14 The rectangleṣ D and E .................................................................................................................... 302
10.15 An example of the 2-ṣurface Ṣ and itṣ ḃoundary ∂Ṣ ...................................................................... 304
10.16 The unit diṣk U aṣ the projection of the unit ḃall V...................................................................... 325
10.17 The open cellṣ U and V...................................................................................................................... 326
10.18 The parameter domain D ................................................................................................................... 332
10.19 The figure of the Möḃiuṣ ḃand .......................................................................................................... 333
10.20 The “geometric” ḃoundary of M ....................................................................................................... 335
11.1 The open ṣquare Rδ((p, q)) and the neighḃorhood N√2δ ((p, q)) ................................................... 350
B.1 The plane angle θ meaṣured in radianṣ ............................................................................................ 365
B.2 The ṣolid angle Ω meaṣured in ṣteradianṣ ........................................................................................ 366
B.3 A ṣection of the cone with apex angle 2θ ........................................................................................ 366
, Liṣt of Taḃleṣ
6.1 The numḃer of intervalṣ & end-pointṣ and the length of each interval for each En ............................ 121
9.1 Expreṣṣionṣ of x around four pointṣ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
9.2 Expreṣṣionṣ of y around four pointṣ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
ix