100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

College aantekeningen Practice of empirical research (6474PEOY_2526_S1)

Beoordeling
-
Verkocht
-
Pagina's
58
Geüpload op
10-11-2025
Geschreven in
2025/2026

Alle college aantekeningen in het Engels

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
10 november 2025
Aantal pagina's
58
Geschreven in
2025/2026
Type
College aantekeningen
Docent(en)
Sarah plukaard
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

LECTURE 1 FROM RESEARCH
PROBLEM TO ANALYSIS
GENERAL INFORMATION COURSE

Course goal

 Bring prior information on research methods together, and expand.
 Prepare you for:
o Master thesis
o Future career
o Not just for end paper

Course components

 Lectures, tutorials, computer labs
o Linked, but not completely overlapping.
 Brightspace
o All info
o Week-by-week
o Preparations  before sessions
 Coordinators
o Sarah Plukaard:
o Jasper Maas:

To pass the course…

 Participate in all tutorials and computer labs
 Review assignment (no grade)
 End paper (grade 5.5 of higher)

STATISTICS TECHNIQUES

Statistical techniques from the bachelor program

 Z-test & t-test
 Correlation & regression
 ANOVA
 Non-parametric tests

THIS IS ALL THE TECHNIQUES FOR YOUR END PAPER!!!!!

,What’s new in PEO?




FROM RESEARCH PROBLEM TO ANALYSIS

Multivariate analysis: the basics

 Bivariate analysis: the relationship between 2 variables
o X (horizontal)  Y (vertical)
o Purpose
 To identify correlations or associations.
 To test hypotheses about how variables relate.
o Common methods
 For 2 numeric variables: correlations (Pearsons,
Spearman), scatterplots, regression.
 For 1 numeric & 1 categorical variable: t-test,
ANOVA
 For 2 categorical variables: chi-square test, cross-
tabulation
 Multivariate analysis: relations between multiple variables at a
time.
o Variables
 X1 & X2…?  Y
 X  Y1 & Y2…?
 Both
o Purpose
 To see how several variables together influence an
outcome.
 To control for confounding variables  variables that
might distort the main relationship.
 To identify patterns or groupings in complex data.
o Types/methods

,  Multiple regression: examines how several
independent variables affect a single dependent
variable.
 MANOVA (multivariate ANOVA): compares groups on
multiple dependent variables simultaneously.
 Factor analysis : reduces many variables into fewer
underlying factors.
 Cluster analysis: groups observations based on
multiple variables.
 Canonical correlation: studies the relationship
between two sets of multiple variables.

Complexity of research questions

 Univariate descriptive: one variable at a time and describes its
main features.
o Purpose
 To summarize & describe a single variable
 To understand its distribution, central tendency and
spread.
o Common descriptive measures
 For numeric (continuous) variables
 Mean
 Median
 Mode
 Range, variance, standard deviation
 For categorical variables
 Frequency counts
 Percentages/proportions
 Bivariate: a descriptive way to summarize how two variables relate.
o Purpose
 To summarize how two variables vary together.
 To detect patterns, trends or associations.
o Common descriptive tools
 Cross-tabulation
 Scatterplots
 Correlation coefficients
 Grouped summaries
o Symmetric: the relationship between 2 variables is mutual 
no distinction between ‘cause’ (predictor) and ‘effect’
(outcome).
 No direction implied.
o Asymmetric, non-causal relationship: one variable is
considered the independent or predictor variable and the other

, is the dependent variable, but this relationship does not imply
causation. It just describes how 1 variable varies with another.
 Directional but not causal
o Asymmetric, causal relationship: one variable causes of
influences the other. This is the typical focus in experimental
research or causal modeling.
 Directional and causal.

Causali
Type Direction Example
ty

Symmetric None No Height vs. weight

Asymmetric non- One → Study hours → exam scores
No
causal other (descriptive)

One →
Asymmetric causal Yes Fertilizer → plant growth
other

 Multivariate: summarize and describe more than 2 variables at the
same time. Looks at patterns, relationships and distributions across
multiple variables simultaneously.
o Purpose: to understand complex interactions, patterns or
structures among several variables at once.
o Examples of multivariate descriptives
 Means and standard deviations for multiple variables
together.
 Correlations matrices
 Covariance matrices
 Cross-tabulation
 Multivariate plots
o When uses: often before performing advanced analyses like
factor analysis, multiple regression or cluster analysis to
understand the structure of the date.

Matching problem with technique
$9.78
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
GabriellaSintauli

Maak kennis met de verkoper

Seller avatar
GabriellaSintauli Universiteit Leiden
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
4 jaar
Aantal volgers
0
Documenten
9
Laatst verkocht
1 week geleden

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen