SOLUTIONS
, CONTENTS
Preface …………………………………………...……………………………………….. 1
Chapter 2 Mathematical Concepts in Kinematics ……………………………………….. 2
Chapter 3 Fundamental Concepts in Kinematics ……………………………………….. 8
Chapter 4 Kinematic Analysis of Planar Mechanisms..................................................................19
Chapter 5 Dimensional Synthesis .................................................................................................81
Chapter 6 Static Force Analysis of Planar Mechanisms .............................................................159
Chapter 7 Dynamic Force Analysis of Planar Mechanisms ........................................................210
Chapter 8 Design & Kinematic Analysis of Gears .....................................................................288
Chapter 9 Design & Kinematic Analysis of Disk Cams .............................................................327
Chapter 10 Kinematic Analysis of Spatial Mechanisms ..............................................................364
Chapter 11 Introduction to Robotic Manipulators .......................................................................409
@
@SSeeisismmicicisisoolalatitoionn
, CHAPTER 2
Problem 2.1 Statement:
Formulate an equation for the vector loop illustrated in Figure P.2.1. Consider that vector V j
always lies along the real axis.
Figure P.2.1 Vector loop (3 vectors where V j changes length) in 2-D complex space
Problem 2.1 Solution:
Taking the clockwise sum of the vector loop in Figure P.2.1 produces the equation
V1ei1 +V2 ei2 − Vj = 0 .
When expanded and separated into real and imaginary terms, the vector loop equation becomes
V1 cos1 +V2 cos2 − Vj = 0
.
V1 sin 1 +V2 sin 2 = 0
Problem 2.2 Statement:
Formulate an equation for the vector loop illustrated in Figure P.2.2. Consider that vector V j
always lies along the real axis and vector V3 is always perpendicular to the real axis.
@Seismi2cisolation
@Seismicisolation
, Figure sP.2.2 sVector sloop s(4 svectors swhere changes slength) sin s2-D scomplex sspace
s Vsj
Problem s2.2 sSolution:
Taking sthe sclockwise ssum sof sthe svector sloop sin sFigure sP.2.2 sproduces sthe sequation
V sei11 s +V se2 i2 s − sV3 s − sV
j s = s0 s.
When sexpanded sand sseparated sinto sreal sand simaginary sterms, sthe svector sloop sequation sbecomes
V1 s cos1 s +V2 s cos2 s − sVj s = s0
.
V1 ssin s1 s +V2 s sin s2 s − sV3 s = s0
Problem s2.3 sStatement:
Calculate sthe sfirst sderivative sof sthe svector sloop sequation ssolution sfrom sProblem s2.2. s Consider
only sangles s 1 s, and svector from sProblem s2 sto sbe stime-dependent.
s 2 s Vsj
Problem s2.3 sSolution:
Differentiating sthe svector sloop sequation ssolution sfrom sProblem s2.2 sproduces sthe sequation
i1V1ei1 + i2V2ei2 − V j = 0.
When sexpanded sand sseparated sinto sreal sand simaginary sterms, sthe svector sloop sequation sbecomes
−1V1 sin 1 − 2V2 sin 2 − V j = 0
.
1V1 cos 1 + 2V2 cos 2 = 0
@Seismi 3cisolation
@Seismicisolation