Finite Mathematics & Its Applications
v v v v
13th Edition by Larry J. Goldstein,
v v v v v
Chapters 1 - 12, Complete
v v v v
, Contents
Chapter 1: Linear Equations and Straight Lines
v v v v v 1–1
Chapter 2: Matrices
v 2–1
Chapter 3: Linear Programming, A Geometric Approach
v v v v v 3–1
Chapter 4: The Simplex Method
v v v 4–1
Chapter 5: Sets and Counting
v v v 5–1
Chapter 6: Probability
v 6–1
Chapter 7: Probability and Statistics
v v v 7–1
Chapter 8: Markov Processes
v v 8–1
Chapter 9: The Theory of Games
v v v v 9–1
Chapter 10: The Mathematics of Finance
v v v v 10–1
Chapter 11: Logic
v 11–1
Chapter 12: Difference Equations and Mathematical Models
v v v v v 12–1
, Chapter 1
v
Exercises 1.1 5
v
6. Left 1, down
v v v v
2
1. Right 2, up 3
v v v
y
y
(2, 3)
v
x
x
( –1, – 52 v v )
v
7. Left 20, up 40
2. Left 1, up 4
v v v v
v v v
y
y
(–20, 40)
(–1, 4)
v
v
x
x
8. Right 25, up 30
v v v v
3. Down 2
v v
y
y
(25, 30) v
x
x
(0, –2) v
9. Point Q is 2 units to the left and 2 units up or
4. Right 2
v v v v v v v v v v v v
v
y (—2,2). v
10. Point P is 3 units to the right and 2 units down or
v v v v v v v v v v v v
(3,—2).
x
(2, 0)
v
1 v
11. —2(1)+ (3) =—2+1=—1so yes the point is v v v v v v v v v v v
3
on the line. v v
5. Left 2, up 1 1 v
12. —2(2)+ (6) =—1is false, so no the point is not
v v v
v v v v v v v v v v v v
y
3
on the line v v
(–2, 1) v
x
Copyright © 2023 Pearson Education, Inc.
v v v v v 1-1
, Chapter 1: Linear Equations and Straight Lines
v v v v v v ISM: Finite Math
v v
1 v
24. 0 = 5
v v v
13 —2x + y =—1 Substitute the x and y v v v v v v v v v
no solution v
3
. x-intercept: none v
coordinates of the point into the equation: v v v v v v
f 1 hı f h When x = 0, y = 5
' ,3 →—2 ' 1 ı +1(3)=—1→—1+1=—1 is
v v v v v v v
v
v v
y-intercept: (0, 5)
y' ı 'y ıJ
v v v v v v v v v v
v v v
v
2 J 2 3 vv v v
a false statement. So no the point is not on the
v v v v v v v v v v 25. When y = 0, x = 7 x-
v v v v v v v v
line.
v intercept: (7, 0) 0 v v v
f 1h f1h =7 v v
14 —2 ' ı + ' ı (—1) =—1 is true so yes the point is no solution
.
v v v v v v v v v v
'y3 ıJ 'y3 ıJ y-intercept: none v
v vv
on the line. v v
26. 0 = –8x
v v v
15. m = 5, b = 8
v v v v v v
x=0 v v
x-intercept: (0, 0) v v
16. m = –2 and b = –6
v v v v v v v
y = –8(0) v v
y=0 v v
17. y = 0x + 3; m = 0, b = 3
v v v v v v v v v v v
y-intercept: (0, 0) v v
2 2 1 v
y = x+0; m = , b =0
v v
27 0 = x –1 v v v v
18 v v v v v v v v v v
3
3 3 .
. x=3 v v
19. 14x+7y =21 v v v v v v
x-intercept: (3, 0) v v
1 v
7y =—14x +21v v v v v
y = (0) –1 v v v v
3
y =—2x +3
y = –1
v v v v
v v
y-intercept: (0, –1) v v
20 x — y =3
v v v v
y
. —y =—x +3 v v v v
y = x —3 v v v v
(3, 0)
x
v
21. 3x =5
vv v v v
5 (0, –1) v
x= v v
3
1 2
28. When x = 0, y = 0.
– x+ y =1 0
v v v v v v
22 2
v
3
v v
When x = 1, y = 2.
. v v v v v v
2 v 1 v
y
y = x +10 v v v
3 2
3 v
y = x +15 v v v
(1, 2) v
4 x
(0, 0) v
23. 0 =—4x +8 v v v v
4x = 8 v v
x =2 v v
x-intercept: (2, 0) v v
y = –4(0) + 8
v v v v
y=8 v v
y-intercept: (0, 8) v v
1-2 Copyright © 2023 Pearson Education, Inc. v v v v v