100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Title: A Complete Solution Guide to Principles of Mathematical Analysis (by Kit-Wing Yu, 2019) | Full Step-by-Step Solutions to Rudin’s Classic Textbook “Principles of Mathematical Analysis” (3rd Edition) with Detailed Proofs, Explanations, and Exercises

Rating
-
Sold
-
Pages
387
Grade
A+
Uploaded on
05-10-2025
Written in
2025/2026

The Complete Solution Guide to Principles of Mathematical Analysis by Kit-Wing Yu (2019) is the definitive companion for students studying from Walter Rudin’s famous Principles of Mathematical Analysis (3rd Edition). Known affectionately as “Baby Rudin,” this foundational text in real analysis is widely used across undergraduate and graduate mathematics programs—and this guide provides comprehensive, detailed, and carefully explained solutions to every exercise, making it an essential tool for mastering rigorous mathematical reasoning. This book is structured to align directly with the chapters and problem sets in Rudin’s text, offering step-by-step derivations and clear justifications for every theorem, lemma, and result. Kit-Wing Yu’s guide is especially valuable for self-learners, mathematics majors, and instructors seeking to verify or illustrate formal proofs. Each solution emphasizes logical structure, mathematical precision, and clarity of explanation, helping readers not only find answers but truly understand the underlying principles.

Show more Read less
Institution
Mathematical Analysis
Course
Mathematical Analysis











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Mathematical Analysis
Course
Mathematical Analysis

Document information

Uploaded on
October 5, 2025
Number of pages
387
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Covers All 11 Chapters

,List of Figures


2.1 The neighborhoods Nh(q) and Nr(p) .............................................................................................. 13
2.2 Convex sets and nonconvex sets ..................................................................................................... 23
2.3 The sets Nh(x), N2h (x) and Nqm (xk) ............................................................................................ 25
2.4 The construction of the shrinking sequence.................................................................................... 29

3.1 The Cantor set ................................................................................................................................ 49

4.1 The graph of g on [an, bn]. .............................................................................................................. 59
4.2 The sets E and Ini ......................................................................................................................... 63
4.3 The graphs of [x] and√(x) ............................................................................................................... 70
4.4 An example for α = 2 and n = 5............................................................................................... 72
4.5 The distance from x ∈ X to E ........................................................................................................ 74
4.6 The graph of a convex function f ................................................................................................... 76
4.7 The positions of the points p, p + κ, q — κ and q ........................................................................... 77

5.1 The zig-zag path of the process in (c) .......................................................................................... 105
5.2 The zig-zag path induced by the function f in Case (i)........................................................... 108
5.3 The zig-zag path induced by the function g in Case (i) ............................................................ 109
5.4 The zig-zag path induced by the function f in Case (ii)......................................................... 109
5.5 The zig-zag path induced by the function g in Case (ii) .......................................................... 110
5.6 The geometrical interpretation of Newton’s method ..................................................................... 111

8.1 The graph of the continuous function y = f (x) = (π — |x|)2 on [—π, π]. .................................... 186
8.2 The graphs of the two functions f and g...................................................................................... 197
8.3 A geometric proof of 0 < sin x ≤ x on (0, π ]. ............................................................................. 199
8.4 2
The graph of y = | sin x| ................................................................................................................ 199
8.5 The winding number of γ around an arbitrary point p................................................................ 202
8.6 The geometry of the points z, f (z) and g(z) ................................................................................ 209

9.1 An example of the range K of f................................................................................................... 219
9.2 The set of q ∈ K such that (∇f3)(f —1(q)) = 0........................................................................... 220
9.3 Geometric meaning of the implicit function theorem ................................................................... 232
9.4 The graphs around the four points ................................................................................................ 233
9.5 The graphs around (0, 0) and (1, 0).............................................................................................. 236
9.6 The graph of the ellipse X 2 + 4Y 2 = 1 ..................................................................................... 239
9.7 The definition of the function ϕ(x, t) ............................................................................................ 243
9.8 The four regions divided by the two lines αx1 + βx2 = 0 and αx 1 — βx2 = 0.......................... 252

10.1 The compact convex set H and its boundary ∂H ........................................................................ 256
10.2 The figures of the sets Ui, Wi and Vi ................................................................................................................................................ 264
10.3 The mapping T : I2 → H ............................................................................................................ 269
10.4 The mapping T : A → D.............................................................................................................. 270
10.5 The mapping T : A◦ → D0 ...........................................................................................................................................................................271
10.6 The mapping T : S → Q .............................................................................................................. 277

vii




@LECTSOLUTIONSSTUVIA

,List of Figures viii

10.7 The open sets Q0.1 , Q0.2 and Q .................................................................................................... 278
10.8 The mapping T : I3 → Q3. .......................................................................................................... 280
10.9 The mapping τ1 : Q2 → I2 ......................................................................................................................................................................... 288
10.10 The mapping τ2 : Q2 → I2 ......................................................................................................................................................................... 289
10.11 The mapping τ2 : Q2 → I2 .........................................................................................................................................................................289
10.12 The mapping Φ : D → R2 \ {0} . .................................................................................................. 296
10.13 The spherical coordinates for the point Σ(u, v) ........................................................................... 300
10.14 The rectangles D and E............................................................................................................... 302
10.15 An example of the 2-surface S and its boundary ∂S ................................................................... 304
10.16 The unit disk U as the projection of the unit ball V................................................................... 325
10.17 The open cells U and V ................................................................................................................ 326
10.18 The parameter domain D............................................................................................................... 332
10.19 The figure of the Möbius band ...................................................................................................... 333
10.20 The “geometric” boundary of M................................................................................................... 335

11.1 The open square Rδ((p, q)) and the neighborhood N√2δ ((p, q)) .................................................. 350

B.1 The plane angle θ measured in radians.......................................................................................... 365
B.2 The solid angle Ω measured in steradians..................................................................................... 366
B.3 A section of the cone with apex angle 2θ ..................................................................................... 366

, List of Tables


6.1 The number of intervals & end-points and the length of each interval for each En.................................121

9.1 Expressions of x around four points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
9.2 Expressions of y around four points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235




ix





@LECTSOLUTIONSSTUVIA

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
LECTJULIESOLUTIONS Havard School
View profile
Follow You need to be logged in order to follow users or courses
Sold
9
Member since
11 months
Number of followers
0
Documents
312
Last sold
1 month ago
JULIESOLUTIONS ALL STUDY GUIDES

You will get solutions to all subjects in both assignments and major exams. Contact me for any assisstance. Good luck! Simple well-researched education material for you. Expertise in Nursing, Mathematics, Psychology, Biology etc,. My Work contains the latest, updated Exam Solutions, Study Guides, Notes 100% verified Guarantee .

5.0

2 reviews

5
2
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions