100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

MATH 255 - Probability and Statistics Solutions to Midterm Exam I

Beoordeling
-
Verkocht
-
Pagina's
5
Cijfer
A+
Geüpload op
25-09-2025
Geschreven in
2025/2026

MATH 255 - Probability and Statistics Solutions to Midterm Exam I Problem 1. [6pt] Suppose A, B, and C are events for a probability experiment such that A and B are mutually independent, P(A) = P(B) = P(C) = 0.5, P(A ∩ C) = P(B ∩ C) = 0.3, and P(A ∩ B ∩ C) = 0.1. Fill in the probabilities of all events in the Karnaugh map below. Show your work. Due to mutual independence, we have P(A ∩ B) = 0.25. P(A ∩ B ∩ C) = 0.1 P(Ac ∩ B ∩ C) = 0.2 (+0.5 pt) P(A ∩ Bc ∩ C) = 0.2 (+0.5 pt) P(Ac ∩ Bc ∩ C) = 0 (+1 pt) P(A ∩ B ∩ C c ) = 0.15 (+1 pt) P(Ac ∩ B ∩ C c ) = 0.05 (+0.5 pt) P(A ∩ Bc ∩ C c ) = 0.05 (+0.5 pt) P(Ac ∩ Bc ∩ C c ) = 0.25 (+2 pt) 1 This study source was downloaded by from CourseH on :26:12 GMT -05:00 Problem 2. [8pt] For a given graph, two vertices, i and j, are selected at random, with all possible values of (i, j) having equal probability, including the cases with i = j. Let D denote the distance between i and j, which is the minimum number of edges that must be crossed to walk in the graph from i to j. If i = j, then D = 0. Find and sketch the PMF of D, and find its expected value and variance for each of the three undirected graphs below. There is no designated space for the final answer. Hint: For (

Meer zien Lees minder
Instelling
Revision
Vak
Revision









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Revision
Vak
Revision

Documentinformatie

Geüpload op
25 september 2025
Aantal pagina's
5
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Bilkent University Fall 2022


MATH 255 - Probability and Statistics

Solutions to Midterm Exam I


Problem 1. [6pt] Suppose A, B, and C are events for a probability experiment such that A and
B are mutually independent, P (A) = P (B) = P (C) = 0.5, P (A ∩ C) = P (B ∩ C) = 0.3, and
P (A ∩ B ∩ C) = 0.1. Fill in the probabilities of all events in the Karnaugh map below. Show
your work.
Due to mutual independence, we have P (A ∩ B) = 0.25.




P (A ∩ B ∩ C) = 0.1
P (Ac ∩ B ∩ C) = 0.2 (+0.5 pt)
P (A ∩ B c ∩ C) = 0.2 (+0.5 pt)
P (Ac ∩ B c ∩ C) = 0 (+1 pt)
P (A ∩ B ∩ C c ) = 0.15 (+1 pt)
P (Ac ∩ B ∩ C c ) = 0.05 (+0.5 pt)
P (A ∩ B c ∩ C c ) = 0.05 (+0.5 pt)
P (Ac ∩ B c ∩ C c ) = 0.25 (+2 pt)




1 09-25-2025 13:26:12 GMT -05:00
This study source was downloaded by 100000899606396 from CourseHero.com on


https://www.coursehero.com/file/243107133/2022Fall-Midterm1Solutionspdf/

, Problem 2. [8pt] For a given graph, two vertices, i and j, are selected at random, with all
possible values of (i, j) having equal probability, including the cases with i = j. Let D denote
the distance between i and j, which is the minimum number of edges that must be crossed
to walk in the graph from i to j. If i = j, then D = 0. Find and sketch the PMF of D, and
find its expected value and variance for each of the three undirected graphs below. There is no
designated space for the final answer. Hint: For (b) and (c), by symmetry, it can be assumed that i = 1
and only j is selected at random.




(a) The PMF can be sketched as (+2 pt)


6 10 8 6 4 2
E[D] = ×0+ ×1+ ×2+ ×3+ ×4+ ×5
36 36 36 36 36 36
10 + 16 + 18 + 16 + 10 70 35
= = = (+0.5pt)
36 36 18

To compute the variance, we can use the second definition by computing

6 10 8 6 4 2
E[D2 ] = × 02 + × 12 + × 22 + × 32 + × 42 + × 52
36 36 36 36 36 36
10 + 32 + 54 + 64 + 50 210 105 35
= = = = .
36 36 18 6
Hence, we obtain
 2
105 35 105 × 18 − 35 × 35 1890 − 1225 665
var(D) = − = 2
= = (+1pt).
18 18 18 324 324

(b) The PMF can be sketched as (+1 pt)


Based on the center of gravity interpretation, the expected value is
3
given by (+0.5 pt).
2
Note that the expected value is well-defined since the random variable
takes finitely many values.




2 09-25-2025 13:26:12 GMT -05:00
This study source was downloaded by 100000899606396 from CourseHero.com on


https://www.coursehero.com/file/243107133/2022Fall-Midterm1Solutionspdf/

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Abbyy01 Exam Questions
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
91
Lid sinds
3 jaar
Aantal volgers
33
Documenten
1121
Laatst verkocht
4 weken geleden

3.5

13 beoordelingen

5
5
4
2
3
3
2
1
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen